National Education Policy-2020

Common Minimum Syllabus for Uttarakhand State Universities and Colleges

PG Two Year Programme

Master in Science

SYLLABUS

w. e. f. - 2025-2026

DEPARTMENT OF CHEMISTRY
KUMAUN UNIVERSITY, NAINITAL

DEPARTMENT OF CHEMISTRY
KUMAUN UNIVERSITY NAINITAL

Faculty of Science Nainital

SYLLABUS PREPARATION COMMITTEE

S.N.	NAME	DESIGNATION	DEPARTMENT	AFFILIATION		
1.	Dr. Chitra Pande	Professor	Chemistry	Kumaun Nainital	University	
2.	Dr. Nand Gopal Sahoo	Professor	Chemistry	Kumaun Nainital	University	
3.	Dr. Geeta Tewari	Professor	Chemistry	Kumaun Nainital	University	
4.	Dr. Shah Raj Ali	Professor	Chemistry	Kumaun Nainital	University	
5.	Dr. Suhail Javed	Associate Professor	Chemistry	Kumaun Nainital	University	
6.	Dr. Mahesh C. Arya	Assistant Professor	Chemistry	Kumaun Nainital	University	
7.	Dr. Manoj Dhuni	Assistant Professor	Chemistry	Kumaun Nainital	University	
8.	Dr. Penny Joshi	Assistant Professor	Chemistry	Kumaun Nainital	University	
9.	Dr. Lalit Mohan	Assistant Professor (Contractual)	Chemistry	Kumaun Nainital	University	
10.	Dr. Girish C. Kharkwal	Assistant Professor (Guest)	Chemistry	Kumaun Nainital	University	
11.	Dr. Deepshikha Joshi	Assistant Professor (Guest)	Chemistry	Kumaun Nainital	University	
12.	Miss. Anchal Aneja	Assistant Professor (Guest)	Chemistry	Kumaun Nainital	University	
13.	Dr. Akanksha Rani	Assistant Professor (Guest)	Chemistry	Kumaun Nainital	University	
14.	Dr. Bhawana Pant	Assistant Professor (Guest)	Chemistry	Kumaun Nainital	University	

SYLLABUS REVIEW COMMITTEE

S.N.	NAME	DESIGNATION	DEPARTMENT	AFFILIATION
1.	Dr. K. R. Prabhu	Professor	Chemistry	Indian Institute of Science,
				Bengaluru
2.	Dr. Robina Aman	Professor	Chemistry	S. S. J. University Almora
3.	Dr. Neeta Joshi	Professor	Chemistry	Sri Dev Suman Uttarakhand
				University, Garhwal
4.	Dr. Beena Negi	Assistant Professor	Chemistry	Gargi College, University of
				Delhi, Delhi

National Education Policy-2020 Common Minimum Syllabus for all Uttarakhand State Universities/ Colleges SUBJECT: CHEMISTRY

OR Choose two DSE(2x4) and one GE (4) Course OR Choose one DSE (4) and two GE(2x4) Course (Total = 12) Students on exit shall be awarded Bachelor of (in the field of M Projects/Entrepreneurship) after securing the requisite 176 credits on comp OR If a student opts for a two-year PG Program, the have the option to obtain conclusion of the second semester of the PG program. IX DSC-(4) Choose three DSE(3x4) Courses OR Choose two DSE(2x4) and one GE (4) Course OR Choose one DSE (4) and two GE(2x4) Course (Total = 12) X DSC-(4) Choose three DSE(3x4) Courses OR Choose two DSE(2x4) and one GE (4) Course OR Choose two DSE(2x4) and one GE (4) Course OR Choose two DSE(2x4) and one GE (4) Course OR Choose two DSE(2x4) and one GE (4) Course OR Choose two DSE(2x4) and one GE (4) Course OR Choose two DSE(2x4) and one GE (4) Course OR Choose one DSE (4) and two	AEC) Course (SEC) hip/ Project	Credits
Students on exit shall be awarded Bachelor of (in the field of M Choose one DSE (4) and two GE(2x4) Course (Total = 12) Students on exit shall be awarded Bachelor of (in the field of M Projects/Entrepreneurship) after securing the requisite 176 credits on comp OR If a student opts for a two-year PG Program, the have the option to obtain conclusion of the second semester of the PG program. IX DSC-(4) Choose three DSE(3x4) Courses OR Choose two DSE(2x4) and one GE (4) Course OR Choose one DSE (4) and two GE(2x4) Course (Total = 12) X DSC-(4) Choose three DSE(3x4) Courses OR Choose two DSE(2x4) and one GE (4) Course (Total = 12)	Dissertation on Major (4+2) OR Dissertation on Minor (4+2) OR Academic Project/ Entrepreneurshi p	22 Credits
Projects/Entrepreneurship) after securing the requisite 176 credits on comp OR If a student opts for a two-year PG Program, the have the option to obtain conclusion of the second semester of the PG program. IX DSC-(4) Choose three DSE(3x4) Courses OR Choose two DSE(2x4) and one GE (4) Course OR Choose one DSE (4) and two GE(2x4) Course (Total = 12) X DSC-(4) Choose three DSE(3x4) Courses OR Choose two DSE(2x4) and one GE (4) Course OR Choose two DSE(2x4) and one GE (4) Course OR Choose two DSE(2x4) and one GE (4) Course OR Choose two DSE(2x4) and one GE (4) Course OR Choose one DSE (4) and two	Dissertation on Major (4+2) OR Dissertation on Minor (4+2) OR Academic Project/ Entrepreneurshi p	22 Credits
Choose three DSE(3x4) Courses OR Choose two DSE(2x4) and one GE (4) Course OR Choose one DSE (4) and two GE(2x4) Course (Total = 12) X DSC-(4) Choose three DSE(3x4) Courses OR Choose two DSE(2x4) and one GE (4) Course OR Choose two DSE(2x4) and one GE (4) Course OR Choose one DSE (4) and two	letion of Semester VIII	Total= 170
OR Choose two DSE(2x4) and one GE (4) Course OR Choose one DSE (4) and two	Dissertation on Major (4+2) OR Dissertation on Minor (4+2) OR Academic Project/ Entrepreneurshi p	22 Credits
GE(2x4) Course (Total = 12)	Dissertation on Major (4+2) OR Dissertation on Minor (4+2) OR Academic Project/ Entrepreneurshi p	22 Credits

Contents
List of Papers (DSC,DSE,GE, SEC) with Semester Wise Titles for 'Chemistry'
Programme Specific Outcomes (PSOs) (Master's in Chemistry)
Semester-VII
DSC 7-Course Title: Advanced Chemistry I
DSE 7A-Course Title: Advanced Inorganic Chemistry
DSE 7B-Course Title: Advanced Organic Chemistry
DSE 7C-Course Title: Advanced Physical Chemistry
GE 7A-Course Title: Biology for Chemists
GE 7B-Course Title: Mathematics for Chemists
IAPT 7-Internship/ Apprenticeship/AcademicProject/AppliedProject/Field Work/Training
Semester-VIII
DSC 8-Course Title: Advanced Chemistry II
DSE 8A-Course Title: Pericyclic Reactions and Photochemistry
DSE 8B-Course Title: Spectroscopic Techniques
DSE 8C-Course Title: Chemistry of Biological Systems
GE 8A-Course Title: Solid State Chemistry and Supramolecular Chemistry
GE 8B-Course Title: Analytical and Separation Techniques
IAPT 8-Internship/ Apprenticeship/Academic/Applied Project/Field Work/Training/ Dissertation
Semester-IX
DSC 9-Course Title: Advanced Spectroscopic Techniques I
DSE 9A-Course Title: Applied Photochemistry and Nuclear Chemistry
DSE 9B-Course Title: Organic Synthesis
DSE 9C-Course Title: Advanced Chromatography
GE 9A-Course Title: Basic Physical Chemistry and Industrial Chemistry
GE 9B-Course Title: Computer for Chemists
GE 9C-Course Title: Essentials of Medicinal and Aromatic Plant Science
IAPT 9-Internship/ Apprenticeship/Academic/Applied Project/Field Work/Training
Semester-X
DSC 10-Course Title: Advanced Spectroscopic Techniques II
DSE 10A-Course Title: Organometallic Chemistry
DSE 10B-Course Title: Metal Ligand Bonding and Polymer Chemistry
DSE 10C-Course Title: Photo Inorganic Chemistry
DSE 10D-Course Title: Heterocyclic Chemistry
DSE 10E-Course Title: Chemistry of Natural Products
DSE 10F-Course Title: Medicinal Chemistry
DSE 10G-Course Title: Advanced Chemical Dynamics and Statistical Thermodynamics
DSE 10H-Course Title: Molecular Orbital Theory and Quantum Mechanics

	5
DSE 10I-Course Title: Radio and Electroanalytical Techniques GE 10A-Course Title: Corrosion, Energy and Polymers GE 10B-Course Title: Metallurgy and Inorganic Materials. GE 10C-Course Title: Environmental Chemistry. IAPT 10- Dissertation	

**			DSC, DSE, GE) with Semester Wise Titles for 'Chemsirt		redits		
Year	Semes	ster Cou	ter Course Paper Title Theory/Praction				
			Bachelor of Chemistry with Honours				
FOURTH	VII	DSC 7	Advanced Chemistry I	Theory	3		
YEAR			Advanced Experiment Chemistry- I	Practical	1		
		DSE 7A	Advanced Inorganic Chemistry	Theory	4		
		DSE 7B	Advanced Organic Chemistry	Theory	4		
		DSE 7C	Advanced Physical Chemistry	Theory	4		
		GE 7A	Biology for Chemists	Theory	4		
		GE 7B	Mathematics for Chemists	Theory	4		
		IAPT 7	Internship/ Apprenticeship/Academic Project/Applied	Theory/	6		
			Project/Field Work/Training	Practical			
	VIII	DSC 8	Advanced Chemistry II	Theory	3		
			Advanced Experiment Chemistry-II	Practical	1		
			DSE 8A	Pericyclic Reactions and Photochemistry	Theory	4	
			DSE 8B	Spectroscopic Techniques	Theory	4	
		DSE 8C	Chemistry of Biological Systems	Theory	4		
				GE 8A	SolidState Chemistry and Supramolecular Chemistry	Theory	4
		GE 8B	Analytical and Separation Techniques	Theory	4		
			IAPT 8	Internship/ Apprenticeship/Academic/Applied		6	
				Project/Field Work/Trainin	Practical		
			Dissertation for B. Sc. with Research				
			Master's in Chemistry				
FIFTH	IX	DSC 9	Advanced Spectroscopic Techniques I	Theory	3		
YEAR		EAR		Advanced Experimental Chemistry-III	Practical	1	
1 13/111		DSE 9A	Applied Photochemistry and Nuclear Chemistry	Theory	4		
		DSE 9B	Organic Synthesis	Theory	4		
		DSE 9C	Advanced Chromatography	Theory	4		
		GE 9A	Basic Physical Chemistry and Industrial Chemistry	Theory	4		
		GE 9B	Computer for Chemists	Theory	4		
		GE 9C	Essentials of Medicinal and Aromatic Plant Science	Theory	4		
		IAPT 9	Internship/ Apprenticeship/Academic/Applied	•	6		
			Project/Field Work/Training	Practical			
	X	DSC 10	Advanced Spectroscopic Techniques II	Theory	3		
			Advanced Experimental Chemistry-IV	Practical	1		
		DSE10A	Organometallic Chemistry	Theory	4		
		DSE 10B	Metal Ligand Bonding and Polymer Chemistry	Theory	4		
		DSE 10C	Photo Inorganic Chemistry	Theory	4		
		DSE 10D	Heterocyclic Chemistry	Theory	4		
		DSE 10E	Chemistry of Natural Products	Theory	4		
		DSE 10E	Medicinal Chemistry	Theory	4		
		DSE 10F	Advanced Chemical Dynamics and Statistical	Theory	4		
		DSL 100	Thermodynamics	Theory	7		
		DSE 10H	Molecular Orbital Theory and Quantum Mechanics	Theory	4		
		11/25 1110	11101000101 OTOTION THOOTY WHO CHAIRMIN MICCHAINES	THOUTY			
					Δ		
		DSE 10H DSE 10H GE 10A	Radio and Electroanalytical Techniques Corrosion, Energy and Polymers	Theory Theory	4		

	GE 10C	Environmental Chemistry	Theory	4
	IAPT 10	Dissertation	Theory/	6
			Practical	

Abbreviations-DSC-Discipline Specific Course; DSE- Discipline Specific Electives; GE-Generic Electives

	Programme Specific Outcomes (PSOs) -Master's in Chemistry					
	After this programme, the learner will be able to:					
PSO1	Acquire knowledge thermodynamics, polymer and surface chemistry. Acquire the practical knowledge in quantitative analysis of binary mixture and learn multistep preparation in organic chemistry.					
PSO2	Master advanced nuclear chemistry along with learning the applications of photochemistry.					
PSO3	Understand the use of reagents in organic synthesis. Apply disconnection approach and protecting groups in organic synthesis.					
PSO4	Learn the principles involved in Chromatography along with their applications.					
PSO5	Understand history of computers, software and their types. Understand extraction techniques, cultivation, processing and therapeutic potential of medicinal plants.					
PSO6	Understand the principle and application of various spectroscopies. Through practical gain knowledge in inorganic, organic and physical chemistry experiment.					
PSO7	Gain proficiency in advanced chemical dynamics and statistical thermodynamics.					
PSO8	Acquire the knowledge of all classes of natural products. Understand the nomenclature and synthesis of heterocyclic compounds.					
PSO9	Understand the organometallic compound of transition metals and mechanism of catalytic reactions.					
PSO10	Gain basic knowledge in corrosion, energy and polymers. Understand metallurgical processes, analyze and synthesize a variety of inorganic materials, including cement, glass, ceramics, steel, and silicones.					

Pattern of examination

A. Theory

Each theory paper shall be of 03 hours and will consist of two sections, A and B. Section A: (Short answers type with reasoning); 40% of the total marks (30 marks, eight questions of six marks each, any five have to be attempted). Section B: (Long answers type); 60 % of the total marks, (45 marks, three questions out of five have to be attempted. Each question carries 15 marks).

B. Internal assessment

For each theory paper, an internal assignment (in the form of class test and or assignments including classroom attendance) of 25 marks for each paper shall be conducted during each semester. The evaluated answer sheets/assignments have to be submitted to the Head of the Department/ Principal along with one copy of award list. The marks obtained have to be uploaded onto the University examination portal and the print out of the award list from portal have to be submitted to the Controller Examination.

C. Practical

The practical work of the students has to be evaluated periodically. The internal assessments (in the form of lab test, lab record, internal evaluation, assignment/home assignment and attendance) of total 25 marks for each semester shall be conducted during the semester. In each semester, practical examination of 75 marks has to conducted by two examiners (External and internal) having duration of two days (time 6 hours each day). The external examiner will examine the students only on the second day of examination. The total number of students to be examined per batch should not be more than sixty. One copy of award list of the practical examination along with attendance has to be submitted to the Head of the Department/ Principal. The marks obtained have to be uploaded onto the University examination portal and the print out of the award list from portal have to be submitted to the Controller Examination.

PG Two Year Programme Department of Chemistry

Semester-VII Bachelor of Chemistry with Honours

DISCIPLINE SPECIFIC COURSE (DSC 7) Advanced Chemistry I (Theory) Advanced Experimental Chemistry -I (Practical)

No. of Hours- 75

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

			Credit	distribution	on of the Course	Eligibility	Pre-requisite of
Cou	rse Title	Credits	Lecture	Tutorial	Practical/Practice	criteria	the course (if any)
DSC:	Advanced						
Che	mistry I						
(T)	heory)						
		4	3	-	1	Chemistry	Nil
	vanced					in Bachelor	
_	rimental					of Science	
	nistry -I						
(Pr	actical)	DAC	HELOD C	E CHEMI	CTDV WITH HOM	OTIDG	
Dugguege	Daahala				STRY WITH HON	OURS	Compatent VIII
Program	me: Bachelo	r oi Cner	nistry With	Honours	Year: IV		Semester: VII Paper: DSC 7
Subject:	Chemistry						
Course:	DSC 7		Course	Title: Adv	anced Chemistry I		
	Outcomes:						
-	-		-		s will be able to:		
	-	_		-	ra of transition metal	complexes	
	earn electronic	_					
					of chemical reactions.		
			-		lynamics and its relat	-	
		ements of	`symmetry,	point grou	ps, orthogonality theo		ter table
Credits:					Discipline Speci		
	rks: As per l	Universit	y rules		Min. Passing M	arks: As per U	•
Unit				Topic			No. of Hours
Unit I	Electronic S						
	a) Introduction, types of transition, factors affecting band width and intensity,						
	spectroscopic ground state terms (Russell Saunders coupling/ L-S						15
	coupling/Spin orbit coupling), determination of spectroscopic terms, atomic						
			·		ntation, Mullikan ter		
				-	al and tetrahedral fiel	`	
	/· I	_			d ¹ -d ¹⁰ octahedral a		
İ	diagram (ge	merai ide	a), Orgel	uiagram, (u -u ocianeural a	na tetranegral	

complexes), selection rules (spin and Laporte) and their relaxation. Discussion

		11
	of the electronic spectrum of d¹-d⁰ octahedral and tetrahedral complexes. Inter-electronic repulsion parameters-Racah parameters (A, B, C), Nephelauxetic effect. Ground state terms symbol of transition metal complexes. Tanabe Sugano diagram (d¹ – d⁰ octahedral complexes). Application of Tanabe-Sugano diagram- Calculation of B, Δ₀, β. Spin-crossover in coordination compounds. Charge transfer spectra- Introduction, types, factors affecting. spectroscopic method of assignment of absolute configuration in optically active metal chelates and their stereochemical information, magnetic properties- magnetic moment, orbital contribution to magnetic moment. b) Electronic angular momentum in diatomic molecules (classification of states)- calculation of states	
Unit II	Reaction Intermediates in Chemical reactions: Carbocations: Classical and non-classical, neighbouring group participation, molecular rearrangements (Wagner-Meerwein rearrangement, Benzilic acid rearrangement, Schmidt reaction), stability and reactivity of bridge-head carbocations. Carbanions: Generation, structure and stability, and their general reactions (Claisen, Wittig and Mannich reaction).	11
	Free Radicals: Generation, structure, stability, types of free radical reactions, free radical substitution mechanism, mechanism at an aromatic substrate, neighbouring group assistance. Allylic halogenation (NBS), oxidation of aldehydes to carboxylic acids, autooxidation. Carbenes: Formation and structure, reactions involving carbenes (Reimer Tiemann reaction). Nitrenes: Generation, structure and reactions of nitrenes. Benzyne and cine substitution reaction	
Unit III	Advanced Thermodynamics-I: Laws of thermodynamics: Fundamental concepts, state and path dependent functions, determination of work done, enthalpy change, and internal energy change in reversible and irreversible expansion and compression, zero, first, second law of thermodynamics and their applications, entropy and its calculations, Nernst heat theorem and third law of thermodynamics, residual entropy	7
Unit IV	Advanced Thermodynamics-II: Free energy and its calculation, properties of Helmholtz free energy and Gibb's free energy, Clausius-Claypeyron equation, chemical potential and entropies. Partial molar properties; partial molar free energy, partial molar volume and chemical potential and their significance, Gibbs-Duhem equation, Concept of fugacity and its determination, chemical potential and fugacity, thermodynamic functions of mixing.	6
Unit V	Symmetry and Group Theory: Symmetry elements and symmetry operations, definitions of group and subgroup and their characteristics, relation between orders of and subgroup and their characteristics, relation between orders of a finite group and its subgroup. Conjugacy relation and classes of symmetry operations, point symmetry (or group) and its	6

classification, Schonflies symbols, representation of group by matrices (representation for the C_n , C_{nv} , C_{nh} etc. groups to be worked out explicitly),

products of symmetry operations. Character of a representation. The great orthogonality theorem (without proof) and its importance. Character tables and their use in spectroscopy.

Recommended Readings:

- F. A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, Advance Inorganic Chemistry, Sixth Edition, John Wiley & Sons, New York, 2003.
- J. D. Lee, Concise Inorganic Chemistry, Fifth Edition, Wiley India, 2012.
- Atkins, Overton, Rourke, Weller and Armstrong, Inorganic Chemistry, Oxford University Press.
- J. E. Huheey, E. A Keiter and R. L. Keiter, Inorganic Chemistry Principles of Structure and Reactivity, Fourth Edition, Pearson Education, 2003.
- W. W. Porterfield, Inorganic Chemistry: A Unified Approach, Elsevier.
- G. Wulfsberg, Inorganic Chemistry, Viva Books.
- G. L. Miessler and D. A. Tarr, Inorganic Chemistry, Pearson Education.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online content:

https://nptel.ac.in/courses/104/106/104106089/

http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp content/S000005CH/P000658/M014009/ET/1456899

566CHE P3 M5 etext.pdf

http://ddugu.ac.in/epathshala content1.aspx

https://www.uou.ac.in/sites/default/files/slm/BSCCH-301.pdf

https://nptel.ac.in/courses/104/106/104106064/

https://www.youtube.com/watch?v=bsfMa1nwNEw&list=PLmxSS9XYst21Z1kmeqDbVZM6lp-

RWSWIo

https://www.youtube.com/watch?v=keoaaCXmUJo&list=PLmxSS9XYst22ylDk1NOSmCLA-

19X7xTzh

https://www.youtube.com/watch?v=JbPvMNIcdf8&list=PLmxSS9XYst22VQmOe6CFkXqAjPtCCDg6

<u>O</u>

https://www.youtube.com/watch?v=zUwbVaBaxTY&list=PLmxSS9XYst227ymEa_ovzDf7xs8snXlRp

https://www.youtube.com/watch?v=9oQcm281TT0&list=PLmxSS9XYst22B6gnqyEAx7R1A4Lqu3nmf

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-cy19/

https://onlinecourses.nptel.ac.in/noc22 cy02/preview

https://nptel.ac.in/courses/104/105/104105033/

https://egyankosh.ac.in/bitstream/123456789/15794/1/Unit-7.pd

https://www.hhrc.ac.in/ePortal/Chemistry/IImscchem-18pche3-unit1-sv.pdf

http://www.du.edu.eg/unFilesCenter/sci/1506861612 ndf

BACHELOR OF CHEMISTRY WITH HONOURS						
Programme: Bachelor of Chemistry with Year: IV Semester: VII						
Honours			Paper: DSC			
Subject: Chemistry						
Course: DSC (Practical) Course Title: Advanced Experimental Chemistry -I						
` '						

Course Outcomes:

Upon successful completion of this course, the students will be able to:

- Understand the laboratory methods and tests related to inorganic mixture analysis including the salts of normal and rare-earth elements and insoluble salts.
- Also, they can understand the quantitative estimation of organic molecules, viscosity constant and activation energy.
- Qualitatively estimate cations and anions in samples.
- Quantitative estimation of percentage of hydroxyl groups, amines/ phenolic contents in organic compounds.
- Determine of iodine and saponification values of an oil sample.

• Determine of DO, COD and BOD of water samples.

Credits:1		Discipline Specific Course	
Max. Ma	rks: As per University rules	Min. Passing Marks: As per Univer	sity rules
Unit	Торі	ic	No. of Hours
Unit I	Laboratory hazards and safety precaution	ns	6
Unit II	Inorganic Chemistry		
	(i) Inorganic Salt Analysis: Qualitati	ve analysis of mixtures of salts	
	containing six radicals including	8	
	element ions), interfering radicals, of		
	in under graduate practical and insolu	ables and simple salts	
	(ii) Determination of DO, COD and BOI	O of water sample.	
	(iii) Determination of organic carbon in	soil	
	(iv) Estimation of Na/K/Ca in wa	ter/aerated drinks/soil using flame	
	photometer		
	(v) Estimation of alkali content in antacion	d tablets.	
Unit III	Organic Chemistry		
	i. Determination of the percentage of	f number of hydroxyl groups in an	
	organic compound by acetylation me	thod	
	ii. Estimation of amines/ phenols u	sing bromate-bromide solution/ or	8
	acetylation method.		o
	iii. Determination of Iodine and Saponif		
Unit IV	Physical Chemistry		
	(i) Determination of the velocity const	ant of acid catalyzed hydrolysis of	
	an ester.	0	
	(ii) Determination of activation energy	8	
	(iii) Determination of Frequency factor of	of a reaction by kinetic studies.	
	(iv) Validity of Arrhenius equation.		
	(v) Determination of the effect of chan	ge in temperature on rate constant of	

a reaction.

- (vi) Determination of the effect of change in concentration of the reactants on rate constant of a reaction.
- (vii)Determination of the effect of change in concentration of the catalyst on rate constant of a reaction.
- (viii) Determination of the effect of change in temperature on rate constant of a reaction.
- (ix) Determination of the effect of change in concentration of the reactants on rate constant of a reaction.
- (x) Determination of the effect of change in concentration of the catalyst on rate constant of a reaction.
- (xi) Determination of the effect of change in ionic strength on the rate constant of a reaction.
- (xii)Determination of the rate constant for the oxidation of iodide ions by hydrogen peroxide.

Note: Allocation of marks - External assessment: Total marks 75 (Inorganic exercise 20; Organic exercise 20; Physical exercise 20; Viva 15); Internal assessment: Total marks 25 (Record 15; attendance 10).

Recommended Readings:

- Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.
- Harris, D. C. Quantitative Chemical Analysis. 6th Ed., Freeman (2007) Chapters 3-5.
- Harris, D.C. Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.
- Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009.
- Skoog, D.A. Holler F.J. and Nieman, T.A. Principles of Instrumental Analysis,
- Ditts, R.V. Analytical Chemistry: Methods of separation. Van Nostrand, New York, 1974.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in viva voce, record and overall performance.

Suggested equivalent online content:

https://www.labster.com/chemistry-virtual-labs/

https://www.vlab.co.in/broad-area-chemical-scienceshttp://chemcollective.org/vlabs

Semester-VII Bachelor of Chemistry with Honours

DISCIPLINE SPECIFIC ELECTIVE (DSE 7 A) ADVANCED INORGANIC CHEMISTRY

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit	distributi	on of the Course	Eligibility	Pre-requisite of
		Lecture	Tutorial	Practical/Practice	criteria	the course (if
						any)
DSE: Advanced					Chemistry	
Inorganic	4	4	_	-	in	-

Chemistry			Bachelor	
			of Science	

BACHELOR OF CHEMISTRY WITH HONOURS

Programme: Bachelor of Chemistry with Year: IV
Honours

Semester: VII
Paper: DSE 7 A

Subject: Chemistry

Course: DSE 7A Course Title: Advanced inorganic chemistry

Course Outcomes:

Upon successful completion of this course, the students will be able to:

- Understand the stereochemistry and bonding in main group compounds and simple reactions of covalently bonded molecules
- Learn about the substitution reactions in square planar complexes.
- Understanding reaction mechanism of octahedral complexes
- To determine the electronic angular momentum in diatomic molecules- calculation of States.

Credits	Discipline Specific Elective 7A	
Max. M	arks: As per University rules Min. Passing Marks: As per Uni	versity rules
Unit	Topic	No. of Hours
Unit I	Stereochemistry and Bonding in Main Group Compounds: Hybridization, Isovalent hybridization, Drago Rule, Bent rule, its applications and energetics of hybridization, some simple reactions of covalently bonded molecules (Atomic inversion, Berry pseudorotation, nucleophilic substitution reactions, free radical mechanism).	15
Unit II	Reaction Mechanism of Octahedral Complexes I: Energy profile of a reaction, reactivity of metal complexes, kinetic application of valence bond and crystal field theories, kinetics of octahedral substitution, acid hydrolysis, factors affecting acid hydrolysis, base hydrolysis, conjugate base mechanism, anation reactions, reactions without metal ligand bond cleavage.	10
Unit II	Reaction Mechanism of Octahedral Complexes II: Redox reactions, electron transfer reactions, mechanism of one electron transfer reactions, outer-sphere type reactions. Complimentary and non-complimentary electron transfer reactions, cross reactions and Marcus-Hush theory, inner sphere type reactions.	10
Unit IV	Substitution Reactions of Square Planar Complexes: Substitution reactions in square planar complexes: Types, mechanism, potential energy diagrams, transition states and intermediates. Factors affecting the substitution reaction. <i>Trans</i> effect and its applications in synthesis of complexes, theories of <i>trans</i> effect.	10
Unit V	PROBLEM SOLVING BASED ON THE ABOVE THEORY	15

Recommended Readings:

• F.A. Cotton, Chemical Application of Group Theory, Wiley.

- D. C. Harris, Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy, Dover Publications, New York.
- P. K. Bhattacharya, Group Theory and its Chemical Applications, Himalaya Publishing House,

Mumbai.

• Gurdeep Raj, Ajay Bhagi and Vinod Jain, Group Theory and Symmetry in Chemistry, Krishna Prakashan Media (P) Ltd., Meerut.

Suggested Continuous Evaluation Methods: Since the class is conceived as learner-centric and built around tasks that require learners to actively use various language skills, formative assessment can and should be used extensively. Oral presentations, peer interviews, and group tasks can be used for this purpose. The end-semester written examination will test all the areas targeted in the course.

Suggested equivalent online courses:

https://nptel.ac.in/courses/113/106/113106069/

https://onlinecourses.nptel.ac.in/noc20 mm22/preview

https://nptel.ac.in/courses/112/106/112106223/

https://nptel.ac.in/courses/104/104/104104080/

https://nptel.ac.in/courses/104/101/104101094/

https://onlinecourses.nptel.ac.in/noc22 cy28/preview

Semester-VII

Bachelor of Chemistry with Honours

DISCIPLINE SPECIFIC ELECTIVE (DSE 7B) ADVANCED ORGANIC CHEMISTRY

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit distribution of the Course			Eligi	bility	Pre-requisite of	
		Lecture	Tutorial	Practic	al/Practice	crit	eria	the course (if any)
DSE: Advanced Organic chemistry	4	4	-		-	in Ba	nistry chelor cience	-
	В	ACHELO	R OF CHE	MISTRY	WITH HO	ONOU	RS	
Programme: Bachelor of Chemistry with Honours Year: IV Semester: VII Paper: DSE 7B								
Subject: Chemistry								
Course: DSE 7B								

Course outcome:

• This course will provide a deep knowledge of reaction mechanism. After completion of this course, the students will be able to understand the mechanism and stereochemistry of electrophilic. & nucleophilic

- substitution reactions and elimination reaction.
- Study of the name reactions and the mechanism and stereochemistry of all the mentioned name reactions will enhance student's skill to understand the various important methods of synthesizing compound which are industrially important.
- This will not only help them to clear the competitive exams but also increase the job opportunities related to these industries.

Credits	:4 Compulsory	
Unit	Contents	Number of Hours
Unit I	Reaction mechanism-I: Aliphatic Electrophilic Substitution: Biomolecular mechanisms- S_E2 and S_E1 . The S_E1 mechanism, electrophilic substitution accompanied by double bonds shifts. Effect of substrates, leaving group and the solvent polarity on the reactivity.	9
	Aliphatic Nucleophilic Substitution : The S_N^2 , S_N^1 , mixed S_N^1 and S_N^2 , S_N^i and SET mechanisms. Nucleophilic substitution at an allylic, aliphatic trigonal and a vinylic carbon. Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium, phase transfer catalysis and ultrasound,	
	ambident nucleophile, regioselectivity. Neighbouring group mechanism, neighbouring group participation by mand obonds, anchimeric assistance. Classical and nonclassical carbocations, phenonium ions, norbornyl system. Neighbouring group assistance in substitution reactions. Substitution reactions involving non-classical carbocations.	
Unit II	Reaction mechanism-II: Elimination reactions: The E2, E1 and E1cB mechanisms and their spectrum. Orientation of the double bond. Reactivity-effects of substrate structures, attacking base, the leaving group and the medium. Mechanism and orientation in pyrolytic elimination	06
Unit III	Reaction mechanism-II: Aromatic Nucleophilic Substitution: The S _N Ar, S _N ¹ , benzyne and S _N ¹ mechanism. Reactivity-effect of substrate structure leaving group and attacking nucleophile. The Von-Richter, Sommelet-Hauser and Smiles rearrangements. Aromatic Electrophilic Substitution: The arenium ion mechanism, orientation and reactivity, energy profile diagrams. The ortho/para ratio, ispo attack, orientation in other ring systems. Diazonium coupling.	15
Unit IV	Name Reactions and their applications: Vilsmeier reaction, Gattermann-Koch reaction, Sandmeyer reaction, Hunsdiecker reaction, Michael reaction. Sharpless asymmetric epoxidation, Aldol, Knoevenagel, Claisen, Mannich, Benzoin, Perkin and Stobbe reactions, Wittig reaction, Heck reaction, Still reaction, Sonogarishira, Negishi coupling, Grubbs Catalyst.	15
Unit V	SYNTHESIS AND IDENTIFICATION OF RELATED PROBLEMS	15

Recommended Readings:

- i. Jerry March, Advanced Organic Chemistry Reactions, Mechanism and Structure, John Wiley.
- ii. RT Morrison and RN Boyd Organic Chemistry, , Prentice Hall.
- III. CK Ingoid, Structure and Mechanism in Organic Chemistry, Cornell University Press.

- iv. SM Mukherji and SP Singh, Reaction Mechanism in Organic Chemistry, Macmillan.
- v. D Nassipuri, Stereochemistry of Organic Compounds, New Age International
- vi. PS Kalsi, Stereochemistry of Organic Compounds, New Age International.

vii.

- viii. FA Carey and RJ Sundberg, Advanced Organic Chemistry, Plenum.
- ix. Modern Organic Reactions, HO House, Benjamin.
- x. Jonathan Clayden, Nick Greeves, and Stuart Warren, Organic Chemistry, Oxford Chemistry press.

Suggested online links:

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

 $\underline{https://nptel.ac.in/content/storage2/courses/104103022/download/module5.pdf}$

https://nptel.ac.in/content/storage2/courses/104103022/download/module9.pdf

https://nptel.ac.in/content/storage2/courses/104101005/downloads/LectureNotes/chapter%208.pdf https://nptel.ac.in/content/storage2/courses/104101005/downloads/LectureNotes/chapter%207.pdf

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Semester-VII

Bachelor of Chemistry with Honours

DISCIPLINE SPECIFIC ELECTIVE (DSE 7C) ADVANCED PHYSICAL CHEMISTRY

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Credits	Credit	distributi	on of the Course	Eligibility	Pre-requisite		
	Lecture	Tutorial	Practical/Practice	criteria	of the course		
					(if any)		
				Chemistry			
4	4	_	_	in	-		
				Bachelor			
				of Science			
BACHEI	OR OF C	HEMISTR	Y WITH HONOUR	RS			
f Chemistr	y with Ho	nours	Year: IV	Sem	ester: VII		
·							
Subject: Chemistry							
Course: DSE 7C Course Title: Advanced Physical Chemical C							
	4 BACHEI	Lecture 4 4 BACHELOR OF C f Chemistry with Ho	Lecture Tutorial 4 4 - BACHELOR OF CHEMISTR f Chemistry with Honours	Lecture Tutorial Practical/Practice 4 4 BACHELOR OF CHEMISTRY WITH HONOUF f Chemistry with Honours Year: IV	Lecture Tutorial Practical/Practice criteria 4 4 Chemistry in Bachelor of Science BACHELOR OF CHEMISTRY WITH HONOURS		

Course Outcomes:

- This paper provides detailed knowledge of surface, polymer, electro and quantum chemistry.
- Upon successful completion of this course, the students should be able to describe Gibb's adsorption isotherm, Freundlich and Langmuir adsorption isotherm, BET method, applications of polymers, Debye-Huckel theory, Debye-Huckel-Onsagar theory and concept of quantum chemistry.

Credits:4	Compulsory	
Unit	Contents	No. of Hours
Unit I	Surface Chemistry: Gibb's adsorption isotherm, Freundlich and Langmuir	7
	adsorption isotherms, determination of free energy of adsorption, BET theory for multilayer adsorption with derivation, determination of surface area using BET method, catalytic activity on solid surfaces, macromolecules,	
Unit II	Polymer Chemistry: Polymers and their general applications, classification of polymers, chain configuration of polymers, liquid crystals and their applications. Molecular mass, number and mass average molecular mass, molecular mass determination using osmometry, viscometry, diffusion and light scattering methods.	8
Unit III	Advanced Electrochemistry: Determination of activity coefficient, Debye-Huckel theory of strong electrolytes with derivation, ionic atmosphere and thickness of ionic atmosphere, Debye-Huckel-Onsagar theory, theory of conduction, Onsagar equation including mathematical deduction.	10
Unit IV	Advanced Quantum Chemistry: de-Broglie concept and de-Broglie equation, physical interpretation and properties of wave functions, Linear, Laplacian, Linear-momentum and Hamiltonian operators, postulates of quantum mechanics, eigen values, eigen functions, derivation of the Schrodinger's wave equation, concept of cartesian and spherical coordinates. Schrodinger's wave equation general and detailed discussion on the applications of Schrodinger's wave equation to some model systems <i>viz.</i> particles in a 1D-, 3D- box, harmonic oscillator, rigid rotator and hydrogen atom.	20
Unit V	PROBLEM SOLVING BASED ON ABOVE UNITS	15

Recommended Readings:

- R. Puri, L. R. Sharma and M. S. Pathnia, Physical Chemistry, Milestone Publisher & Distributors, New Delhi.
- K. L. Kapoor, Physical Chemistry. Macmillan *Publishers* India Limited.
- K. J. Laidler, Kinetics, Pearson Education India.

Suggested online links:

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

https://books.google.co.in/books/about/Basics_of_Polymer_Chemistry.html?id=ciRHDwAAQBAJ&redir_esc=y

https://www.google.co.in/books/edition/Applied Colloid and Surface Chemistry/FGyIJ1Z5Tr4C?hl=en&gbpv=1&dq=SURFACE+CHEMISTRY&printsec=frontcover

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method Marks

20

Mid-term exam/ in-class or on-line tests/ home assignments/ group discussions/ oral presentations	15 marks
Overall performance throughout the semester, Discipline, participation in different	10 marks
activities) & Attendance	

Course prerequisites: To study this course, a student must have had passed theory papers of VII semester.

Suggested equivalent online courses:

https://onlinecourses.nptel.ac.in/noc21 cy45/preview

https://onlinecourses.nptel.ac.in/noc21 ch48/preview

https://onlinecourses.nptel.ac.in/noc20_cy27/preview

https://onlinecourses.nptel.ac.in/noc21 cy20/preview

https://www.classcentral.com/course/swayam-chemistry-i-introduction-to-quantum-chemistry-and-

molecular-spectroscopy-3981

Unit

https://www.classcentral.com/course/swayam-quantum-chemistry-of-atoms-and-molecules-19982

https://nptel.ac.in/courses/104/108/104108057/

https://nptel.ac.in/courses/115/101/115101107/

https://nptel.ac.in/courses/104/101/104101124/

https://nptel.ac.in/courses/104/105/104105128/

Semester-VII Bachelor of Chemistry with Honours

GENERIC ELECTIVE (GE 7A)- Biology for Chemists

No. of Hours- 60

No. of Hours

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credi	t distributi	on of	f the Course	Eligibility	Pre-requisite of the	
		Lecture	Tutorial	Pra	ctical/Practice	criteria	course (if any)	
GE:						Chemistry	-	
Biology for	4	4	-		-	in Bachelor		
Chemists						of Science		
		BACHEI	OR OF C	HEM	IISTRY WITH	HONOURS		
Programme:	Bachelor	of Ch	emistry v	vith	Year: IV		Semester: VII	
Honours							Paper: GE 7A	
Subject: Cher	nistry							
Course: GE 7	Α	Course 7	Title: Biolo	gy fo	or Chemists			
Course Outco	mes:	'						
Upon successf	ul complet	ion of this	course, the	stud	ents will be able	to:		
 Unders 	tand the	functions	and signif	icanc	e of cell organ	nelles. This co	urse will make them	
appreci	iate the stri	uctural and	l functional	aspe	cts of cell and or	ganelles.		
Have to	• Have the basic understanding of the metabolic processes in biological system which will help							
			biochemistr		1			
Credits:4	Credits:4					Generic Electives 2		
Max. Marks:	As per Un	iversity r	ules		Min. Passing N	Marks: As per	University rules	

Topic

		21
Unit I	Cell as Unit of Life: The cell theory; prokaryotic and eukaryotic and eukaryotic cells; cell size and shape; Eukaryotic cell components. Cell Membrane and Cell Wall: The functions of membranes; Models of membrane structure; faces of the membrane, selective permeability of	15
	permeability of the membranes; cell wall	
Unit II	Cell Organelles-I: Mitochondria: Structure, marker enzymes, composition; function. Chloroplast: Structure, marker enzymes, composition; semiautonomous nature, chloroplast DNA. ER, Golgi body and Lysosomes: Structures and roles of ER, golgibody and lysosomes.	15
Unit III	Cell Organelles-II: Nucleus: Nuclear Envelope- structure of nuclear pore complex; chromatin; molecular organization, DNA packaging in eukaryotes, euchromatin and heterochromatin, nucleolus and ribosome structure (brief). Nacleoside and Nacloeotides and DNA structure.	15
Unit IV	Metabolism: Introduction, basal metabolic rate (BMR), Carbohydrate protein and lipid metabolism, cell respiration, amaerabic respiration, aerobic respiration, formation of acetal COA, citric acid cycle, electron transport system, adenosinetnphosphate, mechanism. ATP generation.	15

Recommended Readings:

- P. H. Raven, Biology, Tata MacGraw Hill.
- P. Sheeler, Cell and Molecular Biology, John Wiley.
- N. A. Campbell, Biology Pearson.
- L.Styer, Biochemistry, Freeman & Co.

Outlines of biochemistry. Fourth edition (Conn, Eric E.; Stumpf, P. K.). Wiley India Pvt. Limited

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online courses:

https://nptel.ac.in/courses/102/103/102103012/

https://nptel.ac.in/content/storage2/courses/102106025/Mod%201/Lec-1.pdf

https://books.google.co.in/books/about/Biology for Chemists.html?id=N4nToAEACAAJ&redir esc=y

Semester-VII Bachelor of Chemistry with Honours

GENERIC ELECTIVE (GE 7B) Mathematics for Chemists

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Credit distribution of the Course Course Credits Eligibility **Pre-requisite of the**

Title		Lecture	Tutori	Practical/Practic	criteria	course (if any)
			al	e		
GE 7B:					Chemistry	
Mathematics	4	4	_	_	in Bachelor	_
for Chemists					of Science	

BACHELOR OF CHEMISTRY WITH HONOURS

Programme: Bachelor of Chemistry with Year: IV

Honours

Semester: VIII
Paper: GE 7B

Subject: Chemistry

Course: GE 7B Course Title: Mathematics for Chemists

Course Outcomes:

Upon successful completion of this course, the students will be able to:

• Understand the concept of mathematical functions, graphs, differentiations, integration and mathematical relations. It will help them to have better grip on mathematics involved in chemistry.

Credits:		Generic Electives 2				
Max. Ma	rks: As per University rules	Min. Passing Marks: As per University	sity rules			
Unit	Тор	ic	No. of Hours			
Unit I	Mathematical Functions: Polynomia trigonometrically function. inverse trigand antilogarithms	· · · · · · · · · · · · · · · · · · ·	10			
Unit II	Curve Sketching/Graph: Inclination of a line and the slope of a line, General equation of straight line, slope-intercept form, slope point form Two-point form, Intercept form, Parallel and perpendicular lines					
Unit III	Differentiation: Differentiation form minimum, Rules of finding maxima and reciprocal relation, exact and in exact differential. Integration: Methods of integrations, s successive, reduction, integration formula	minima, Partial differentiation, Euler differentials, Chain rule for partial ubstitution, partial function, by parts,	20			
Unit IV	Fundamentals of Mathematical Relational Probability, vectors mathematical relational Vectors, Matrices, Determinants, Capproximation, Roots of quadratic equal Coordinate systems in three dimensions	ns, Complex number, Series, Stirling lation. Methods of solving equation.	20			

Recommended Readings:

- D.A. McQuarrie, Mathematics for physical Chemistry University Science Books.
- R. Mortimer, Mathematics for Physical Chemistry, 3rd Ed. Elsevier.
- E. Steiner, The Chemical Maths Books, Oxford University Press.

mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online courses:

https://www.jcu.edu.au/__data/assets/pdf_file/0004/115897/Maths-for-Chemistry.pdf https://www.birmingham.ac.uk/Documents/college-eps/college/stem/Student-Summer-Education-Internships/Maths-for-Chemists-Booklet.pdf

Semester-VIII

Bachelor of Chemistry with Honours

DISCIPLINE SPECIFIC COURSE (DSC 8) Advanced Chemistry II (Theory) Advanced Experimental Chemistry -II (Practical)

No. of Hours-75

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSC 8: Advanced Chemistry II Advanced Experimental Chemistry -II (Practical)	4	3	-	1	Chemistry in Bachelor of Science	(II any)

BACHELOR OF CHEMISTRY WITH HONOURS

Programme: Bachelor of Chemistry Wit	n Honours Year: 1v	Paper: DSC 8
Subject: Chemistry		
Course: DSC 8	Course Title: Advanced Chemistry II	

Course Outcomes:

Upon successful completion of this course, the students will be able to:

- Understand stereoselectivity, stereospecificity, regioselectivity, chemo selectivity, enantiomeric and diastereomeric excess.
- understand about the metal ligand bonding and cluster compounds
- a brief introduction about the stereochemistry of organic molecules
- to know about the higher order reactions, collision theory and arrhenius equation
- understand the thermodynamics of non ideal solutions

Credits:3	·	Discipline Specific Course 8	
Max. Mar	ks: As per University rules	Min. Passing Marks: As per	University rules
Unit	Topic		No. of Hours

		24
	Metal-Ligand Bonding: Sigma bonding in octahedral complexes: Classification of metal valence orbitals into sigma symmetry, formation of ligand group orbitals (LGOs) of sigma symmetry, Formation of molecular orbitals of sigma symmetry, construction of molecular orbital energy level	10
	diagram involving only sigma bond contribution from ligands, pi bonding in octahedral complexes: Classification of metal valence orbital into pi symmetry, Formation of LGOs of pi symmetry. Formation of pi MOs and construction of molecular orbital energy level diagram involving sigma and pi contribution from pi donor ligands, Sigma and pi bonding in tetrahedral complexes and square planar complexes	
Unit II	Cluster Compounds: Introduction, classification, higher boranes, carboranes, metalloboranes and metallocarboranes. Metal carbonyl and metal halide clusters. Clusters with metal-metal multiple bonds. Electron counting in clusters (Wade's rule), Isolobal analogy.	5
	Axial and planar chirality and helicity (P & M); stereochemistry and configurations of allenes, spiranes, alkylidene, cycloalkanes, adamantanes, catenanes, biphenyls (atropisomerism), bridged biphenyls, ansa compounds and cyclophanes. Topicity and prostereoisomerism: Topicity of ligands and faces and their nomenclature, stereogenicity, cyclostereoisomerism; configurations, conformations and stability of cyclohexanes, (mono and di Substituted), cyclohexenes, cyclohexanones, halocyclohexanones, decalines, decalols, decalones. Asymetric induction; Cram's, Prelog's and Horeaus rules. Dynamic stereochemistry (cyclic and acyclic). Stereochemistry of	15
Unit IV	compounds containing N, S and P. stereospecificity, regioselectivity and chemoselectivity. Enantiomeric and diasteriomeric excess. Chemical Dynamics: Third and general order reactions, Experimental methods for kinetic studies, <i>viz</i> ; conductometric, potentiometric and spectrophotometeric methods, effect of temperature on rate of reaction, Arrhenius equation. Chemical molecular dynamics: Collision theory of reaction rates, steric factor, activated complex theory, comparison of collision and activated complex theories, ionic reactions, kinetic salt effects, steady state concept, kinetic and thermodynamic control of reactions. Kinetics of gaseous reactions on solid surface, unimolecular and bimolecular surface reactions, kinetics of condensation and addition polymerization reactions, mechanism of H ₂ -Br ₂ , H ₂ -Cl ₂ reactions, decomposition of the following compounds: acetaldehyde, ozone and H ₂ O ₂ .	10
	Thermodynamics of Non-ideal Solutions: Non-ideal systems; Excess functions for non-ideal solutions, activity, activity coefficient, Debye-Hückel theory for activity coefficient of electrolytic solutions, determination of activity coefficients, ionic strength.	5

Jerry March Advanced Organic Chemistry Reactions Mechanism and Structure John Wiley

- R. T. Morrison and R. N. Boyd, Organic Chemistry, Prentice Hall.
- K. Ingold, Structure and Mechanism in Organic Chemistry, Cornell University Press.
- S. M. Mukherji and S. P. Singh, Reaction Mechanism in Organic Chemistry, Macmillan.
- Nasipuri, Stereochemistry of Organic Compounds, New Age International
- P. S. Kalsi, Stereochemistry of Organic Compounds, New Age International.
- S. M. Mukherjee, Pericyclic Reactions, Macmillan, India.
- F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Plenum
- Benjamin, Modern Organic Reactions, HO House
- Ernest L. Eliel and Samuel H. Wilen, Stereochemistry of Organic Compounds, Wiley Indi
- Ernest L. Eliel, Stereochemistry of Carbon Compounds. Tata McGraw Hill.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online content:

https://nptel.ac.in/courses/104/106/104106127/

https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-cy25/

https://onlinecourses.swayam2.ac.in/ugc19 ch01/preview

https://nptel.ac.in/courses/104/101/104101005/

https://nptel.ac.in/courses/104/106/104106077/

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

https://nptel.ac.in/content/storage2/courses/104103022/download/module5.pdf

https://nptel.ac.in/content/storage2/courses/104103022/download/module9.pdf

https://nptel.ac.in/content/storage2/courses/104101005/downloads/LectureNotes/chapter%208.pdf

DACHELOD OF CHEMICTRY WITH HONOURS

BACHELOR OF CHEMISTRY WITH HONOURS Programme: Bachelor of Chemistry with Honours Year: IV Semester: VI						
Programme: B	mme: Bachelor of Chemistry with Honours Year: IV					
					Paper: DSC 8	
Subject: Chem	stry	C T'4	A.1. 1.15		1 ' 4 TT	
Course: DSC 8		Course Title	: Advanced Exp	erimental C	nemistry -11	
Course Outcon						
The students						
•	rarious inorganic compound					
•	organic compounds via t	-	s will include	photochemic	al and enzymatic	
	various organic compounds					
 Experiments 	to physically verify differe	ent adsorption i	sotherms.			
Credits:1		D	iscipline Specifi	c Elective		
Max. Marks: A	s per University rules	N	lin. Passing Mai	ks: As per U	Jniversity rules	
Unit		Topic			No. of Hours	
Unit I	Laboratory hazards and sa	fety precaution	ıs		06	
Unit II	(A) Inorganic Compou	ınd Synthesis	s: Preparation	of selected		
	inorganic compounds	such as:				
	i. $[Ni(dmg)_2]$					
	ii. [Cu(NH ₃) ₄]SO ₄ .H ₂	O				
	iii. Cis-K[Cr(C ₂ O ₄) ₂ (I	H2O)2]				

		26
iv.	$Na[Cr(NH_3)_2(SCN)_4]$	
v.	[Mn(acac) ₃]	08
vi.	$K_3[Fe(C_2O_4)_3]$	
vii.	Prussian Blue, Tumbull's Blue	
viii.	$Co[NH_3)_6][Co(NO_2)_6]$	
ix.	Cis-[Co(trien)(NO ₂) ₂]Cl.H ₂ O	
X.	Hg [Co(SCN) ₄]	
xi.	$[\text{Co}(\text{py})_2\text{Cl}_2]$	
xii.	[Ni(NH ₃) ₆]Cl ₂	
xiii.	$K_3[Cr(C_2O_4)_3].3H_2O$	
	Quantitative estimation of metal ions by complexometric	
	titration, direct and / or back titration, use of masking agents.	
	anic Chemistry	
(i)Ph (ii) I (iii)I (iv) Prep (v) pher (III) (i) Bal	Photoreduction of benzophenone to benzopinacol in 2- propanol Conversion of Benzil to Benzilic acid Isomerization of Dimethyl maleate to Dimethyl fumrate Conventional methods of synthesis notochemical synthesis of Benzpinacolonefrom Benzophenone Beckmann rearrangement: Benzophenenone to Benzanilide Benzilic acid rearrangement: Benzoin to Benzilic acid Synthesis of heterocylic compounds:(a) Skraup synthesis: paration of quinoline from aniline Fischer indole synthsis: Preparation of 2-phenyl indole from hylhydrazine. Enzymatic synthesis Enzymatic reduction: Reduction of ethyl acetoacetate using ker's yeast to yield enantiomeric excess of S (+) ethyl-3- droxybetanoate and determine its optical purity. (ii) Biosynthesis of ethanol from sucrose. Microwave synthesis (i) Synthesis using microwaves (ii) Alkylation of diethyl malonate with benzyl chloride (iii) Synthesis using phase transfer catalyst (iv) Alkylation of diethyl malonate or ethylacetoacetate with an	08

Unit IV

Physical Chemistry:

(i) Validity of Arrhenius equation.

		27
(iii) (iv)	Flowing Clock reactions (Ref. Experiments in Physical Chemistry by Showmaker). Study of the adsorption of an acid by charcoal. Validity of Freundlich's Adsorption isotherm.	08
(vi)	Determination of Partition Coefficients. Determination of molecular surface energy of a liquid by Stalagmometer method. Determination of association factor of the given liquid by drop-	

Note: Allocation of marks - External assessment: Total marks 75 (Inorganic exercise 20; Organic exercise 20; Physical exercise 20; Viva 15); Internal assessment: Total marks 25 (Record 15; attendance 10). Students have to perform one practical from each section.

Recommended Readings

• Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.

pipette method.

- Harris, D. C. Quantitative Chemical Analysis. 6th Ed., Freeman (2007) Chapters 3-5.
- Harris, D.C. Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.
- Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009.
- Skoog, D.A. Holler F.J. and Nieman, T.A. Principles of Instrumental Analysis, Cengage Learning India Edition.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in viva voce, record and overall performance.

Suggested equivalent online content:

https://www.labster.com/chemistry-virtual-labs/ https://www.vlab.co.in/broad-area-chemical-sciences http://chemcollective.org/vlabs

Semester-VIII Bachelor of Chemistry with Honours

DISCIPLINE SPECIFIC ELECTIVE (DSE 8A) Pericyclic Reactions and Photochemistry

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite of
		Lecture	Tutorial	Practical/Practic	criteria	the course (if
				e		any)
DSE: Pericyclic					Chemistry	
Reactions and	4	4	-	-	in Bachelor	-
Photochemistry					of Science	

BACHELOR OF CHEMISTRY WITH HONOURS						
Programme: Bachelor of Chemistry with Honours	Year: IV	Semester: VIII Paper: DSE 8A				

Subject: Chemistry

Course: DSE 8A Course Title: Pericyclic Reactions and Photochemistry

Course Outcomes:

Upon successful completion of this course, the students will be able to:

- Acquire the knowledge of pericyclic and photochemical reactions.
- Apply laws of photochemistry to different types of photochemical reactions,

• Able to draw the Jablonskii diagram.

Credits:4	Discipline Specific Elective	
	per University rules Min. Passing Marks: As per U	niversity rules
Unit	Topic	No. of Hours
Unit I	Pericyclic Reactions I: Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3-butadiene, 1,3,5-hexatriene and allyl system. Classification of pericyclic reactions. Woodward-Hoffmann correlation diagrams. FMO and PMO approach. Electrocyclic reactions- conrotatory and disrotatory motions, 4n, 4n+2 and allyl system. Cycloadditions- antarafacial and suprafacial additions, 4n and 4n+2 systems.	10
Unit II	Pericyclic Reactions II: 2+2 addition of ketenes, 1,3-dipolar cycloadditions and cheleotropic reactions. Sigmatropic rearrangements- suprafacial and antarafacial shifts of H, Sigmatropic shifts involving carbon moieties, 3,3- and 5,5 sigmatropic rearrangements. Claisen, Cope and Aza-Cope rearrangements. Fluxional tautomerism, Ene reaction.	10
Unit III	Basics of Photochemistry: Laws of photochemistry, electronically excited states-life times, Energy dissipation by radiative and non-radiative processes, Franck-Condon principle, Photochemical stages-primary and secondary processes. photo-physical reactions, Jablonskii diagram, photosensitization, quantum yield and its determination, fluorescence, phosphorescence and chemi luminiscence with suitable examples.	10
Unit IV	Photochemistry of Organic Compounds: Photochemistry of alkenes; cis-trans isomerization, ; photochemical additions; reactions of 1,3- and 1,4-dienes; dimerization, Norrish type I & II reactions (cyclic and acyclic); α , β -unsaturated ketones; β , γ -unsaturated ketones; cyclohexenones (conjugated, cyclohexadienones (cross conjugated & conjugated); paterno- Buchi reaction, photoreductions; photochemistry of aromatic compounds, isomerisations reactions, photo Fries rearrangement of ester & anilidets, Barton reaction, Hoffmann- Loefller-Freytag reaction.	15
Unit V	PROBLEM BASED ON ABOVE SYLLABUS	15

Recommended Readings

- F.A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Parts A & B, Plenum: U.S.
- W. M. Horspool, Aspects of Organic Photochemistry, Academic Press.
- T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry Addison-Wesley Educational Publishers, Inc.
- J. March, Advanced Organic Chemistry, John Wiley & Sons.
- L. Stryer, Biochemistry, W. H. Freeman & Co. vi. P. A. Sykes, Guidebook to Mechanism in Organic Chemistry, Prentice-Hall
- Jerry March, Advanced Organic Chemistry Reactions, Mechanism and Structure, John Wiley.
- K. Ingold, Structure and Mechanism in Organic Chemistry, Cornell University Press.
- S. M. Mukherji and S. P. Singh, Reaction Mechanism in Organic Chemistry, Macmillan. Page 8 of 42
- Nasipuri, Stereochemistry of Organic Compounds, New Age International
- P. S. Kalsi, Stereochemistry of Organic Compounds, New Age International.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online contents:

https://nptel.ac.in/courses/104106077

https://www.youtube.com/watch?v=Md1GS3vdYdA

https://www.youtube.com/watch?v=Ih7tQ7rY2Wc

Semester-VIII

Bachelor of Chemistry with Honours

DISCIPLINE SPECIFIC ELECTIVE (DSE 8B) Spectroscopic Techniques

No. of Hours- 60

Paper: DSE 8B

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit distribution of the Course			Eligibili	ity	Pre-	
		Lecture	Tutorial	Practical/Pra	acti	criteri	a	requisite of
				ce				the course
								(if any)
DSE: Spectroscopic						Chemistry	y in	
Techniques	4	4	-	-		Bachelor of		-
						Science	2	
BACHELOR OF CHEMISTRY WITH HONOURS								
Programme: Bachelor	of Chemistr	y with Hor	nours	Ye	ar: I	V	Sem	ester: VIII

Subject. Chemistry

Course: DSE 8B Course Title: Spectroscopic Techniques

Course outcomes:

• This course will add on the theoretical aspects of electron spin, nuclear magnetic resonance, infrared and UV spectroscopy along with mass spectrometry which will further help in structure elucidation of various compounds through numerical problems.

• This is essential for structure elucidation of known as well as novel compounds.

Credits:4	Discipline Specific Elective	• •
	ks: As per University rules Min. Passing Marks: As per Univer	-
Unit	Contents	No. of Hours
Unit I	Nuclear Magnetic Resonance Spectroscopy: Nuclear Spin, nuclear resonance, saturation, shielding of magnetic nuclei, chemical shift and its measurements, factors influencing the chemical shift. Deshielding, spin-spin interaction, factors influencing coupling constant (J). Classification (ABX, AMX, ABC, A ₂ B ₂ etc.), spin decoupling, basic idea about instruments, NMR studies of nuclei other than proton; Advantages of FT NMR. Use of NMR in medical diagnostics. NOE, simplification of complex spectra.	15
Unit II	Mass Spectrometry: Introduction, ion production-EI, CI, FD and FAB, factors affecting fragmentation, ion analysis, ion abundance. Detectors-ECD, TCD and FID, Mass spectral fragmentation of organic compounds, common functional groups, molecular ion peak, metastable peak, McLafferty rearrangement. Nitrogen rule, examples of Mass fragmentation of class of organic compounds.	10
Unit III	Infrared Spectroscopy: Instrumentation and simple handling. Selection rules, normal modes of vibration, group frequencies, overtones, hot bands, factors affecting the bond positions and intensities, Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines and carbonyl compounds (ketones, aldehydes, esters, amides, acids anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding, solvent effect on IR of gaseous, solids and polymeric materials. Simple applications, vibrational spectra of metal carbonyls.	15
Unit IV	Ultraviolet and Visible Spectroscopy: Various electronic transitions (185 to 800 nm), Lambert-Beer's Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, diens, conjugated polyenes. Fieser-Woodward rules for conjugated diens and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds.	5
Unit V	Interpretation of Organic Compounds Problems based on spectroscopic data viz. NMR, IR, UV Spectroscopy and Mass spectrometry.	15

- Pavia, Lampman, Kriz, Spectroscopy, Books/Cole; Vyvyan
- PS Kalsi Spectroscopy of Organic Compounds, New Age International Publishers;
- Silverstein, Robert M.; Webster, Francis X.; Kiemle, Spectrometric Identification of Organic Compounds, John Wiley;
- ML Martin, JJ Delpeach and GJ Martin, Heyden, Practical NMR Spectroscopy,
- Colin N. Banwell and Elaine M. Mc Cash, Fundamentals of Molecular Spectroscopy, Tata McGraw Hill.
- RJ Abraham, J Fischer and P Loftus, Introduction to NMR Spectroscopy, Wiley.
- DH Williams, I Fleming, Spectroscopic Method in Organic Chemistry: Tata MacGraw Hill.
- Willard Merritt, Dean, Settle, Instrumental Method of Analysis: Seventh Edition, CBS, Publication.

Suggested online links:

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, include or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks					
Mid-term exam/ in-class or on-line tests/ home assignments/ group discussions/ oral	15					
presentations						
Overall performance throughout the semester, Discipline, participation in different activities)						
& Attendance						

Course prerequisites:	To	study	this	course,	a	student	must	have	had	passed	theory	papers	of	VII
semester.														

Suggested		

Further Suggestions:	
----------------------	--

Semester-VIII

Bachelor of Chemistry with Honours

DISCIPLINE SPECIFIC ELECTIVE (DSE 8C) Chemistry of Biological Systems

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Cred	it distribution	of the Course	Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course
						(if any

						32
DSE 8C:	4	3	_	1	Chemistry in	-
Chemistry of					Bachelor of	
Biological					Science	
Systems						

Programme: Bachelor of Chemistry with Honours	Year: IV	Semester: VIII
		Paper: DSE 8C

BACHELOR OF CHEMISTRY WITH HONOURS

Course: DSE 8 C Course Title: Chemistry of Biological systems

Course Outcomes:

Upon successful completion of this course, the students will be able to:

- Detailed knowledge of bioinorganic, bioorganic and biophysical chemistry.
- Get information about the synthesis, classification, extraction, purification, uses of enzymes and coenzymes, essential and trace metals and role of metal ions in biological processes.
- Understand the forces and mechanisms which are essential to sustain all the life on earth.

Credits: 4	E 8C		
Max. Ma	niversity rules		
Unit	Topic	No. of Hours	
Unit I	Bioinorganic Chemistry: Essential and elements (Al, Hg, Cd, Pb). Role of metal in Na ⁺ , Ca ²⁺ , Mg ²⁺ , Mn ²⁺ , Fe ³⁺ , Co ²⁺ , Ni ²⁺ , Cocell membrane: active transport (ionophore transport (ion pumps: Na ⁺ /K ⁺ pump). Nitremechanism, structure of nitrogenase, fact Metal complexes in transmission of energy light dependent reaction, Haeme proteins: haeme groups, structure and biological fiperoxidase, catalase, myoglobin, haemod Metalloproteins: function of metalloproteins rubredoxin, plastocynin), light harvesting (cdismutase, carbonic anhydrase), oxygen storedoxin, oxygen s	ons in biological processes: K ⁺ , (u^{2+}, Zn^{2+}) . Ion transport through is and ion channels) and passive ogen fixation: definition, types, ors affecting nitrogen fixation. It is chlorophyll a, chlorophyll b, definition, porphin, porphyrin, functions of cytochrome P450, oglobin, and oxygen uptake. It is, electron transfer (cytochrome, thlorophyll), catalyst (superoxide)	12
Unit III	Bioorganic Chemistry I: Introduction, Nextraction, purification and uses of enzynclinical therapy. Chemical and biological calenzymes like catalytic power, specificity and molecular adaption. Enzyme kin Lineweaver-Burk plots, reversible and irrestate theory, Fisher's lock and key and Koconcept and identification of active site by significant concept and identificant concept	nes in food drink industry and talysis, remarkable properties of and regulation. Proximity effects etics, Michaelis-Mentien and reversible inhibition. Transition shland's induced fit hypothesis, te-directed, mutagenesis.	12

Recommended Readings:

- P.S. Kalsi, Bioorganic, Bioinorganic and Supramolecular Chemistry, New Age International.
- L. Stryer, Biochemistry 4th Ed., W. H. Freeman & Co.
- S. Zubay, Biochemistry Addison-Wesley.
- S. J. Lippard and J. M. Berg, Principles of Bioorganic Chemistry, University Science Books.
- Berteni, H.B. Gray, S.J. Lippard and J.S. Valentine, FBioinorganic Chemistry, , University Science Books.
- Hermann Dugs and C. Penny, Bioorganic Chemistry: A Chemical Approach to Enzyme Action, Springer-Verlag.
- Trevor Palmer, Understanding Enzymes, Prentice Hall.
- Collins J Sucking, Enzyme Chemistry: Impact and Application, Ed. Chapman and Hall.
- M.I. page and A. Williams, Enzyme Mechanisms Ed., Royal Society of Chemistry.
- N.C. Price and L. Stevens, Fundamental of Enzymology, Oxford University Press.
- Michael D. Trevan, Immobilized Enzymes: An Introduction and Application in Biotechnology, John Wiley.
- Alan Fersht. Enzyme Reaction and Mechanism, W H Freeman & Co (Sd).
- A.L. Lehninger, Principles of Biochemistry, Worth Publishers.
- J. M. Berg, J. L. Tymoczko and L. Stryer, Biochemistry, W.H. Freeman.
- Donald *Voet*, Charlotte W. Pratt, Judith G. *Voet*, Biochemistry, John Wiley.
- E.E. Conn and P.K. Stumpf, Outlines of Biochemistry, John Wiley.
- L. S. W. H. Freeman, Macromolecules: Structure and Function, Prenctice Hall.
- Pramod Pandey, Organic Chemistry, John Wiley

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online content:

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

https://onlinecourses.nptel.ac.in/noc22_cy12/preview
https://nptel.ac.in/content/storage2/courses/104103018/pdf/mod1.pdf

Semester-VIII Bachelor of Chemistry with Honours

GENERAL ELECTIVE (GE 8A) Solid State Chemistry and Supramolecular Chemistry

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Little	Credit	Cred	it distribut	non of the Course	Eligibility	Pre-requisite		
		Lecture	Tutorial	Practical/Practice	criteria	of the course		
						(if any)		
DSE:					Chemis			
Solids State	4	4	-	-	try in	_		
Chemistry and					Bachelor			
supramolecular					of Science			
Chemistry								
	BACH	ELOR O	F CHEMIS	STRY WITH HONOU	RS			
Programme: Bachelon	r of Chem	istry with	Honours	Year: IV		Semester: VIII		
					Paper: GE 8A			
Subject: Chemistry								
Course: GE 8A Course Title: Solid State Chemistry and Supramolecular Chemistry								
1								

Course Outcomes:

Upon successful completion of this course, the students will be able to:

- Understand basics of solid-state reaction, crystal defects, and their effects on properties of materials.
- Learn the synthesis, preparations and applications of organic solids, fullerenes and molecular devices.
- Understanding the role of supramolecules in catalysis.
- Supramolecular chemistry will help them in understanding the role of supramolecules in catalysis. It will assist them to get a suitable job in the relevant industrial and scientific field.

Credits:4	Credits:4 Discipline Specific Elect					
Max. Ma	As per University					
Unit	No. of Hours					
	Solid State Reactions, Crystal Defects and Non principles, experimental procedures, co-precipitation					
Unit I	state reactions, kinetics of solid-state reactions, crystals, intrinsic and extrinsic defects- point defect vacancies- Schottky defects and Frenket defects	, Perfect and imperfect	15			

Recommended Readings:

- G.W. Castellan, Physical Chemistry, 4 th Ed. Narosa.
- R.G. Mortimer, Physical Chemistry, 3 rd Ed. Elsevier: NOIDA, UP.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, includes or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online courses:

https://www.ias.ac.in/article/fulltext/reso/023/03/0277-0290

Semester-VIII

Bachelor of Chemistry with Honours

GENERIC ELECTIVES (GE 8 B) Analytical and Separation Techniques

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

	Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite of
			Lecture	Tutorial	Practical/Practice	criteria	the course (if
							any)
	CE A L		4			CI · ·	
_	OLIV TIMMIJ VICKI	•	•			Chemistry	

			30
and Separation		in Bachelor	
Techniques		of Science	

BACHELOR OF CHEMISTRY WITH HONOURS				
Programme: Bachelor of Chemistry with Honours		Year: IV	Semester: VIII Paper: GE 8B	
Subject: Chemistry				
Course: GE 8B	Course Title: Analytical and Separation Techniques			

Course outcomes:

- This paper provides detailed knowledge of X-ray diffraction and electron diffraction techniques as well as students will learn chromatographic methods, radio analytical methods and extraction methods used in analysis of compounds.
- On completion of this course students will have detailed knowledge on TLC, HPLC, GLC, GSC, Ion exchange and gas chromatography.

Unit	Content	No. of Hours
Unit I	 X-ray Diffraction Methods: (I) Bragg condition, Miller indices, Laue's method, Bragg's method, Debye-Scherrer method of Xray structural analysis of crystals. Description of the procedure for an X-ray structure analysis, absolute configuration of molecules. Ramchandran diagram. (II) General Introduction of Electron Diffraction: Scattering intensity vs scattering angle, Wierl equation. 	15
Unit II	 Chromatographic methods: I. An Introduction to Chromatography, Principle, instrumentation and Applications of gas and liquid chromatography, Partition Chromatography, Adsorption Chromatography II. Principle and application of TLC, paper, column and HPLC, Migration Rates of Solutes, and Broadening and Column Efficiency. III. Principles of GLC, Instruments for GLC, Gas Chromatographic Columns and Stationary Phases, Applications of GC and advances in GC, Column Efficiency in LC, Van-Demeter equation (no derivation), concept about HETP- Applications. IV. Gas-Solid Chromatography V. Ion Exchange chromatography: Cationic, anionic exchangers and their applications. VI. Gas Chromatography: Theory of gas chromatography, parts of gas 	20

		3/
	chromatography, Detectors (TCD, FID, ECD).	
Unit III	Radio Analytical Methods: Basic principles and types of measuring instrument,	15
	isotope dilution techniques- principle ofoperations and uses. Applications.	
	Neutron Activation Methods, Isotope Dilution Methods	
Unit IV	Types of Extraction: Introduction, principle, techniques, factors affecting	10
	solvent extraction	

Books Recommended

- Skoog et al principles of Instrumental Analysis 2017 Brooks/ Cole Publisher
- Vogels Analytical Chemistry. Sultan Chand & Sons publishers 2005.
- B.K. Sharma, Instrumental methods of chemical analysis; Krishna Prakashan India 1972
- R. Puri, L. R. Sharma and M. S. Pathnia, Advanced Physical Chemistry, Milestone Publisher & Distributors, New Delhi

Suggestive digital platforms web links

https://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000944...

https://egyankosh.ac.in/handle/123456789/43341

Semester-IX

MASTER'S IN CHEMISTRY

DISCIPLINE SPECIFIC COURSEE (DSC 9)

Advanced Spectroscopic Techniques I Advanced Experimental Chemistry-III

No. of Hours-75

Paper: DSC 9

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

		Credit	Vistributio	on of the Course	Eligibility	Pre-requisite of
C TEM						-
Course Title	Credits	Lecture	Tutoria	Practical/Practic	criteria	the course (if any)
			l	e		
DSE:					Chemistry	
Advanced					in	
Spectroscopic	4	3	_	1	Bachelor	-
Techniques-I					of Science	
Advanced						
Experimental						
Chemistry-IV						
		MAS	STER'S IN	N CHEMISTRY		
Programme: Master's in Chemistry			Year: V		Semester: IX	

Course: DSC 9 Course Title: Advanced Spectroscopic Techniques I

Course Outcomes:

- Develop a comprehensive understanding of Nuclear Magnetic Resonance (NMR) spectroscopy, including nuclear spin, chemical shift, spin-spin interaction, instrumentation with applications to nuclei such as ¹³C, ¹⁹F and ³¹P.
- Master the principles and techniques of Mass Spectrometry, including ion production methods, fragmentation patterns and interpretation of mass spectra for organic compounds.
- Gain proficiency in Microwave and Raman Spectroscopy, diatomic vibrating rotator, anharmonicity, selection rules, CARS and their applications.
- Understand structure elucidation of various compounds through numerical problems.
- To know about the electromagnetic spectrum, born oppeheimer approximation, and fourier transform spectroscopy

Credits: 3	redits: 3 Discipline Specific Course			
	x. Marks: As per University rules	Min. Passing Marks: As per Uni	•	
Unit	Торіс	:	No. of Hours	
Unit I	Nuclear Magnetic Resonance Spectrosco Instrumentation and principle of NMR, affecting Signal to noise ratio, Simplificat Shift reagent and field strength. ¹³ C NMR schemical shift (aliphatic, olefinic, alkynecarbonyl carbon), shelding and desheilding second order spectra, Long range coupling shift. ¹³ C, ³¹ P, ¹⁹ F NMR.	Nuclear Overhauser effect, Factors ion of complex spectra by the use of spectroscopy: General considerations, e and aromatic hetero aromatic and g. Coupling constants, First order and	12	
Unit II	Two-dimensional NMR spectroscopy: Pulse sequence, Pulse width-Principle, COSY, HETCOR, HMQC, NOESY, COSY, DEPT, INEPT, APT and INADEQUATE techniques. Problem solving using spectral graphs and data.			
Unit III	Electromagnetic spectrum: Characteriz Quantization of energy, Born Oppenheime Zeeman and Stark effect, Representation of Factors affecting line width and intenstransform spectroscopy.	8		
Unit IV	Microwave Spectroscopy: Diatomic vi Force constant and bond strength, anhadiagram, P, Q, R branches, Breakdown of Interaction of rotations and vibrations, Simple applications. Problem solving.	armonicity, Morse potential energy f Born Oppenheimer approximation,	8	
Unit V	Raman Spectroscopy: Classical and qua rotational, vibrational and vibrational-rotat mutual principles. Resonance Raman	tional Raman spectra, selection rules,	8	

determination of AB2, AB3 molecule by IR and Raman spectroscopy.

Recommended Readings

- Pavia, Lampman, Kriz, Spectroscopy, Books/Cole; Vyvyan
- P.S. Kalsi, Spectroscopy of Organic Compounds, New Age International Publishers;
- Silverstein, Robert M.; Webster, Francis X.; Kiemle, Spectrometric Identification of Organic Compounds.
- M. L. Martin, J.J. Delpeach and G.J. Martin, Heyden, Practical NMR Spectroscopy,
- Colin N. Banwell and Elaine M. Mc Cash, Fundamentals of Molecular Spectroscopy, Tata McGraw Hill.
- R.J. Abraham, J. Fischer and P. Loftus, Introduction to NMR Spectroscopy, Wiley

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online content:

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

MASTER'S IN CHEMISTRY				
Programme: Master's in Chemistry Year: V Semester: D				
			Paper: DSC	
Subject: Chemistry				
Course: DSC	Course Title:	Advanced Experimental Cher	nistry – III (Practical)	

Course Outcomes:

Upon completion of this course, the students will have the knowledge and skills to: understand the laboratory methods and tests related to inorganic, organic and physical experiments. The students will able to

- Determine the concentrations of inorganic compounds through complexometric titration and gravimetric estimation.
 - Synthesize organic compounds via two steps. This will include photochemical and enzymatic synthesis of various organic compounds.
 - Learn the experiments of chemical kinetics for the determination of the velocity constant, activation energy, effect of temperature and concentration on the rate constant, partition coefficients etc.

• Experiments to physically verify different adsorption isotherms.

Credits:		Discipline Specific Course	·
Max. Ma	rks: As per University rules	Min. Passing Marks: As per U	Iniversity rules
Unit	Topic		No. of Hours
Unit I	Laboratory hazards and safety precautions	4	
Unit II	(A). Synthesis and interpretation of organic various spectroscopic techniques i). U.V ii). I.R iii). NMR iv). Raman	e / inorganic compounds using	26

Note: Allocation of marks - External assessment: Total marks 75 (Each practical carries 30 marks; Viva 15); Internal assessment: Total marks 25 (Record 15; attendance 10). Students have to perform two practicals.

Recommended Readings

- J. Mendham, Vogel's Quantitative Chemical Analysis, Pearson, 2009.
- D. C. Harris, Quantitative Chemical Analysis. 6th Ed., Freeman (2007) Chapters 3-5.
- Harris, D.C. Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.
- S.M. Khopkar, Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009.
- D.A. Skoog, F.J. Holler and T.A. Nieman, Principles of Instrumental Analysis, Cengage Learning India Edition

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online content:

https://www.labster.com/chemistry-virtual-labs/ https://www.vlab.co.in/broad-area-chemical-sciences http://chemcollective.org/vlabs

Semester-IX

MASTER'S IN CHEMISTRY

DISCIPLINE SPECIFIC ELECTIVE (DSE 9A) Applied Photochemistry and Nuclear Chemistry

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

		Credit	distributi	on of the Course	Eligibility	Pre-
Course Title	Credits	Lecture	Tutorial	Practical/Practice	criteria	requisite of
						the course
						(if any)
DSE: Applied					Chemistry	-
Photochemistry and	4	4	_	-	in	
Nuclear Chemistry					Bachelor	
					of Science	
MASTER'S IN CHEMISTRY						
Programme: N	laster's in	Chemistr	V	Year: V	Se	emester: IX

	41
	Paper: DSE
	9A

Subject: Chemistry

Course: DSE 9A Course Title: Applied Photochemistry and Nuclear Chemistry

Course Outcomes:

- Understand the interaction of electromagnetic radiation with matter, quantum yield and photochemical reaction mechanisms.
- Learn about singlet molecular oxygen reactions, smog formation, photodegradation of polymers and energy state transitions.
- Gain proficiency in determining rate constants, effects of light intensity and molecular photochemistry including fluorescence and phosphorescence.
- Master advanced nuclear chemistry concepts including radioactive decay, nuclear reactions, fission processes and energy production in stars.

	ocesses and energy production in stars.					
Credits:4	Discipline Specific Course					
	Max. Marks: As per Univ. rules Min. Passing Marks: As J	oer Univ. rules				
Unit	Торіс	No. of Hours				
Unit I	Photochemical Reactions : Interaction of electromagnetic radiation with matter, types of excitations, fate of excited molecule, quantum yield, transfer of excitation energy, actinometry. Singlet molecular oxygen reactions, photochemical formation of smog and photodegradation of polymers.	10				
Unit II	Determination of Reaction Mechanism: Classification, rate constants and life times of reactive energy states, determination of rate constants, effect of light intensity on the rate of photochemical reactions. Molecular Photochemistry: Transitions between states (Chemical, classical	20				
	and quantum dynamics, vibronic states). Potential energy surfaces; transitions between potential energy surfaces, radiative transitions. A classical model of radiative transitions. The absorption and emission of light-state mixing, spinorbit coupling and spin forbidden radiative transitions, absorption complexes, fluorescence, phosphorescence and chemiluminiscence.					
Unit III	Nuclear Models Atomic structure, Nuclides, Nuclear stability, mechanical effects due to orbiting and spinning nucleons, quarks and gluons. Franck -Condon principle. Radiation Chemistry Interaction of neutrons, gamma radiation with matter. Units,	5				
	Radiolysis.Radiochemical, and radiometric analysis in chemistry.					
Unit IV	Advanced Nuclear Chemistry: Radioactive equilibrium, nuclear reaction, Q value cross section, types of reaction. Theory of Nuclear forces. Radioactive decay, alpha, beta, gamma, nuclear reactions; characteristics and similarities with chemical reactions, threshold and cross section, nuclear reaction due to neutron, proton, deutron and gamma irradiation, Nuclear fission, fission cross section, chain fission and resonance capture. Fission products and fission yields, mass and charge distribution in fission and spallation reaction, nuclear					
Unit V	reactor. Nuclear fission and stellar energy. PROBLEM BASED ON ABOVE THEORY	15				
UNIL V	TRUBLEM BASED ON ABOVE THEORY	15				

Recommended Readings

- N.J. Turro Modem Molecular Photochemistry, University Science Books
- A Gilbert, J Baggot, Essentials of Molecular Photochemistry, Blackwell Scientific
- K.K. Rohtagi-Mukharji, Fundamentals of Photochemistry, Wiley- Eastern.
- A Cox and T. Champ, Introductory Photochemistry, McGraw-Hill.
- R.P. Kundall and A. Gilbert, Thomson Nelson, Photochemistry
- J. Coxon and B. Halton, Organic Photochemistry, Cambridge University Press.
- N.J. Turro, Modern molecular photochemistry, University Science Books.
- D. N. Bajpai, Advanced Physical Chemistry, S. Chand and Co.
- Kundu and Jain, Modern Physical Chemistry, S. Chand and Co.

Suggested Continuous Evaluation Methods: Since the class is conceived as learner-centric and built around tasks that require learners to actively use various language skills, formative assessment can and should be used extensively. Oral presentations, peer interviews, and group tasks can be used for this purpose. The end-semester written examination will test all the areas targeted in the course.

Semester-IX

MASTER'S IN CHEMISTRY

DISCIPLINE SPECIFIC ELECTIVE (DSE 9B)-Organic Synthesis

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course	Credits	Credit	Credit distribution of the Course			Pre-requisite of
Title		Lecture	Tutorial	Practical/Practice	criteria	the course (if
						any)
DSE:					Chemistry in	
Organic	4	4	_	-	Bachelor of	-
Synthesis					Science	
	MASTER'S IN CHEMISTRY					

Programme: Master's in Chemistry Year: V

Year: V Semester: IX Paper: DSE 9B

Subject: Chemistry

Course: DSE 9B Course Title: Organic Synthesis

Course Outcomes:

- Understand use of the reagents in organic synthesis, oxidation, reduction of different organic compounds.
- Learn and appreciate the concepts of disconnection approach and protection of groups.

- Understand the applications of these concepts in drug designing. Develop expertise in oxidation and reduction techniques for transforming hydrocarbons, alcohols, carbonyls and amines.
- Apply the disconnection approach and synthons in planning organic synthesis, ensuring correct order of functional group transformations.
- Understand and utilize protecting groups to safeguard functional groups such as alcohols, amines, carbonyls and carboxylic during synthesis.
- Gain knowledge of organometallic reagents, including preparation and application of compounds from Group I and II metals, transition metals and elements like sulfur, silicon and boron.

Credits:4	4 Discipline Specific Course		
Max	. Marks: As per University rules	Min. Passing Marks: As per U	niversity rules
Unit	Торіс		No. of Hours
Unit I	Oxidation: Introduction. Different oxidated Hydrocarbons-alkenes, aromatic rings, so (activated & nonactivated). Alcohols carboxylic acids. Amines. Oxidation iodobenzene diacetate and thallium (III) Reduction: Introduction, Different realkanes, alkenes, alkynes and aromatic ring Carbonyl compounds-aldehydes, ketoned Hydrogenolysis.	20	
Unit II	Disconnection Approach: An introduce quivalents, disconnection approach, furtimportance of the order of events in orgetwo group C-X disconnections, chemostroup and two group C-C disconnections organic synthesis. Application in chemological policies alder reaction, Michaeal addition, Inc.	nctional group interconversions, the ganic synthesis, one group C-X and electivity, reversal of polarity, One ons. Aliphatic nitro compounds in ical synthesis and name reactions,	10
Unit III	Protecting Group: Principle of protection carboxyl groups. Ring Synthesis: Saturated heterocycles, rings.	synthesis of 3,4,5 and 6 membered	5
Unit IV	Organometallic Reagents: Principle applications of the following in organic organic compounds Li, Hg and Zn compounds; Other elements;	c synthesis: Group I and II metal apounds. Transition metals: Pd, Ni,	10
Unit V	Problems based on above theory		15

Recommended Readings

- H.O. House, W.A. Benjamin, Modern Synthetic Reaction,
- W. Carruthers, Some Modern Methods of Organic Synthesis. Cambridges Univ. Press.
- J. March Advanced Organic Chemistry, Reactions Mechanisms and Structure.
- F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part B, Plenum Press.

- Rodd's Chemistry of Carbon Compounds, Ed. S. Coffey, Elsevier.
- S. Warren, Designing Organic Synthesis, Wiley.
- J. Fuhrhop and G. Penzillin, Organic Synthesis- Concept, Methods and Starting Materials Verlage VCH.
- W. A. Benjamin, Modern Synthetic Reactions, H.O. House

Suggested Continuous Evaluation Methods: Since the class is conceived as learner-centric and built around tasks that require learners to actively use various language skills, formative assessment can and should be used extensively. Oral presentations, peer interviews, and group tasks can be used for this purpose. The end-semester written examination will test all the areas targeted in the course.

Suggested equivalent online courses:

https://onlinecourses.nptel.ac.in/noc22 cy30/preview

https://nptel.ac.in/courses/104/105/104105087/

https://nptel.ac.in/courses/104/103/104103111/

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

https://nptel.ac.in/content/storage2/courses/104101005/downloads/LectureNotes/chapter%2013.pdf

https://nptel.ac.in/content/storage2/courses/104103023/download/module2.pdf

https://nptel.ac.in/courses/104/103/104103111/

Semester-IX

MASTER'S IN CHEMISTRY

DISCIPLINE SPECIFIC ELECTIVE (DSE 9C) Advanced Chromatography

No. of Hours- 60

Paper: DSE 9C

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

		Credit	distributi	on of the Course	Eligibility	Pre-
Course Title	Credits	Lecture	Tutorial	Practical/Practice	criteria	requisite
						of the
						course
						(if any)
DSE 9C: Advanced					Chemistry	
Chromatography	4	4	-	_	in	_
					Bachelor	
					of Science	
	MASTER'S IN CHEMISTRY					
Programme: Master	's in Cher	mistry	Year	: V	Semester	r: IX

Subject: Chemistry	
Course: DSE	Course Title: Advanced Chromatography

Course Outcomes:

Upon successful completion of this course, the students will be able to:

- Understand the chromatographic methods and their industrial applications.
- Gain a comprehensive understanding of various chromatographic techniques, including adsorption, paper, thin layer, and column chromatography and their principles and applications.
- Master the theory and practice of gas chromatography, including knowledge of detectors and chromatographic efficiency concepts like the Van-Deemter equation and plate theory.
- Understand the features and instrumentation of high-performance liquid chromatography (HPLC) and its applications in complex sample analysis.
- Learn the principles of ion exchange chromatography, including ion exchange resins, equilibria with their applications in separating ionic species.

Credits:			
Max. M	arks: As per University rules Min. Passing Marks: As per	r University rules	
Unit	Торіс	No. of Hours	
Unit I	Chromatography		
	Introduction, Definition, Classification of Chromatographic Techniques.	5	
Unit II	Adsorption Chromatography		
	Paper Chromatography: Principle, Types and theory of paper		
	chromatography, R _f , R _X and R _G values, Techniques of paper		
	chromatography, Two-dimensional paper chromatography, Applications.		
	Thin Layer Chromatography: Theory of TLC, Quantitative evolution of	15	
	separated solutes, Various types of TLC, High performance thin layer	13	
	chromatography, Applications Column Chromatography: Principle of		
	adsorption chromatography, Separation of the compounds, Chiral		
	chromatography, Applications		
Unit	Gas Chromatography: Theory of gas chromatography, parts of gas		
III	chromatograph, detectors (TCD, FID, ECD), Van-Deemter equation (no		
	derivation), concept about HEPT- plate theory and rate theory.	10	
	Applications.		
	High Performance Liquid Chromatography		
	Characteristics feature of HPLC, Instrumentation for HPLC, Applications.		
Unit	Ion Exchange Chromatography		
IV	Ion Exchangers, Cation Exchange resins, Ions Exchange equilibria, Anion		
	Exchange resins, Factor affecting ion exchange equilibria, Application of	15	
	IEC.		
Unit V	Problems Related to Chromatographic Techniques	15	

Recommended Readings

- Vogel's Quantitative Chemical Analysisby J. Mendham.
- Instrumental Methods of Analysis by H. H. Willard.
- Analytical Chemistry by G. D. Christian.
- Exploring Chemical Analysis by D. C. Harris.

- Basic Concepts of Analytical Chemistry by S. M. Khopkar.
- Principles of Instrumental Analysis by D. A. Skoog, F. J. Holler and T. A. Nieman.
- Laboratory Handbook of Chromatographic & Allied Methods by O. Mikes and R. A. Chalmes.
- Analytical Chemistry: Methods of separation by R. V. Ditts.
- Skoog et al principles of Instrumental Analysis 2017 Brooks/ Cole Publisher
- Vogels Analytical Chemistry. Sultan Chand & Sons publishers 2005.
- B.K. Sharma, Instrumental methods of chemical analysis; Krishna Prakashan India 1972
- B. R. Puri, L. R. Sharma and M. S. Pathnia, Advanced Physical Chemistry, Milestone Publisher & Distributors, New Delhi

Suggested Continuous Evaluation Methods: Since the class is conceived as learner-centric and built around tasks that require learners to actively use various language skills, formative assessment can and should be used extensively. Oral presentations, peer interviews, and group tasks can be used for this purpose. The end-semester written examination will test all the areas targeted in the course.

Semester-IX

Masters of Chemistry

GENERIC ELECTIVES (GE 9A) Basic Physical Chemistry and Industrial Chemistry

No. of Hours- 60

Min. Passing Marks: As per University rules

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

		Credit	distributi	on of the Course	Eligibility	Pre-
Course Title	Credits	Lecture	Tutorial	Practical/Practice	criteria	requisite of
						the course
						(if any)
GE:					Chemistry	
Basic Physical	4	4	-	-	in	-
Chemistry and					Bachelor	
Industrial Chemistry					of Science	
		MASTER	'S IN CHI	EMISTRY		
Programme: Master's in Chemistry			,	Year: IV Se		emester: IX
					P	aper: GE 9A
Subject: Chemistry						
Course: GE 9A		Course Ti	tle: Basic I	Physical Chemistry a	and Industri	al Chemistry
Course Outcomes:						
Upon successful completion	on of this c	ourse, the	students wi	ll be able to:		
 Understand about Ga 	as laws, ide	eal and real	gas.			
Acquire knowledge about rate laws and order of reaction.						
Know about polymer industrial chemistry.						
Credits:4				Generic Elective 1		

Max. Marks: As per University rules

		47
Unit I	Basic physical chemistry I Gaseous state: Gas laws, kinetic theory of gas, collision and gas pressure, derivation of gas laws from kinetic theory, average kinetic energy of translation, Boltzmann constant and absolute scale of temperature, Maxwell's distribution law of molecular speeds (without derivation), most probable, average and root mean square speed of gas molecules, principle of	15
	equipartition of energy (without derivation). Mean free path and collision frequencies. Heat capacity of gases (molecular basis); viscosity of gases. Real gases, compressibility factor, deviation from ideality, van der Waals equation of state, critical phenomena, continuity of states, critical constants. Liquid state: physical properties of liquids and their measurements: surface tension and viscosity.	
Unit II	Basic Physical Chemistry II Chemical kinetics and catalysis: order and molecularity of reactions, rate laws and rate equations for first order and second order reactions (differential and integrated forms); zero order reactions. Determination of order of reactions. Temperature dependence of reaction rate, energy of activation. Catalytic reactions: homogeneous and heterogeneous catalytic reactions, autocatalytic reactions, catalyst poisons, catalyst promoters (typical examples).	15
Unit III	Industrial chemistry I Fuels: Classification of fuel, heating values. Origin of coal, carbonization of coal, coal gas, producer gas, water gas, coal-based chemicals. Origin and composition of petroleum, petroleum refining, cracking, knocking, octane number, anti-knock compounds, Kerosene, liquefied petroleum gas (LPG), liquefied natural gas (LNG), petrochemicals (C1 to C3 compounds and their uses). Fertilizers: Manufacture of ammonia and ammonium salts, urea, superphosphate, biofertilizers. Glass and Ceramics: Definition and manufacture of glasses, optical glass and coloured glass. Clay and feldspar, glazing and vitrification, glazed porcelein, enamel. Portland cement: composition and setting of cement, white cement.	15
Unit IV	Industrial Chemistry II Polymers: Basic concept, structure and types of plastics, polythene, polystyrene, phenol-formaldehydes, PVC; manufacture, physical properties and uses of natural rubber, synthetic rubber, silicone rubber; synthetic fibres: Nylon-6,6, polyester, terylene, rayon; foaming agents, plasticizers and stabilizers. Paints, Varnishes and Synthetic Dyes: Primary constituents of a paint, binders and solvents for paints. Oil based paints, latex paints, baked-on paints (alkyd resins). Constituents of varnishes. Formulation of paints and varnishes. Synthesis of Methyl orange, Congo red, Malachite green, Crystal violet. Drugs and pharmaceuticals: Concept and necessity of drugs and	15

pharmaceuticals. Preparation, and uses of Aspirin, Paracetamol, Sulphadiazine, Quinine, Chloroquine, Phenobarbital, Metronidazole. Fermentation Chemicals: Production, and purification of ethyl alcohol, citric acid, lactic acid, Vitamin B12, Penicillin.

Recommended Readings:

• N. Levine: Physical Chemistry

• G. W. Castellan: Physical Chemistry

• P. W. Atkins: Physical Chemistry

• R. S. Berry, S. A. Rice and J. Ross: Physical Chemistry

• T. Engel and P. Reid: Physical Chemistry

• W. J. Moore: Physical Chemistry

• F. Maqdoom: A Textbook for Industrial Chemistry

• Kent J. A.: Riegels Handbook of Industrial Chemistry

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online content: https://caluniv.ac.in/syllabus/chemistry.pdf

Semester-IX

Master's in Chemistry

GENERIC ELECTIVES (GE 9 B)- Computer For Chemists

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

		Credit distribution of the Course			Eligibility	Pre-
Course Title	Credits	Lecture	Tutorial	Practical/Practice	criteria	requisite of the course (if any)
GE 9B: Computer for Chemists	4	4	-	-	Passed Class XII	-
	l .	MASTER	'S IN CHI	EMISTRY	l	ı
Programme: Master's	in Chemist	ry	Yea	nr: V		ester: IX er: GE 9 B

Subject: Chemistry

Course: GE9B Course Title: Computer for Chemists

Course Outcomes:

		49
• Un	derstand about history and development of different types of Computers.	
• Acc	quire knowledge about Software's and languages	
Credits:4	Generic Elective 2	
Max. Mar	ks: As per University rules Min. Passing Marks: As per U	niversity rules
Unit	Topic	No. of Hours
Unit I	History of Development of Computer, Classification of Computer,	
	Generation of Computers, General Awareness of Computer Hardware-	
	CPU and other Peripheral devices, Input, Output and Auxiliary Storage	15
	Devices	
Unit II	Software and their types (System Software and Application Software)	
	Computer Language and their types (Low Level and HighLevel	
	Languages), Operating System, Requirement of OS, Types of OS: Single	15
	User and Multi-user OS with examples.	
Unit III	MS Word, Facilities in MS Word, MS Excel, Facilities in MS Excel, MS	

PowerPoint, Facilities in MS PowerPoint, Oral Presentations using visual

Computer Applications in Chemistry: Introduction to Computers,

Flow Charting- Concept, Some flow charts- examples, Concept of

Programming- BASIC language, Some Programmes in BASIC.

Recommended Readings:

Unit IV

• Computer Fundamentals by P K Sinha.

aids such as PowerPoint etc.

- Computer Fundamentals by Goel.
- Computer Fundamentals and Programming in C by Reema Thareja.

General Information, Some related terminology,

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Semester-IX

MASTER'S IN CHEMISTRY

GENERIC ELECTIVE (GE 9C)

Essentials of Medicinal and Aromatic Plant Science

No. of Hours- 60

15

15

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

		Credit	distributio	on of the Course	Eligibility	Pre-
Course Title		Lecture	Tutorial	Practical/Practic	criteria	requisite of
				e		the course
						(if any)
GE 9C:					Chemistry	
Essential of Medicinal	4	4	-	-	in Bachelor	
and Plant Science					of Science	-

MASTER'S IN CHEMISTRY			
Programme: Master's in Chemistry	Year: V	Semester: IX	
		Paper: GE 9C	

Subject: Chemistry

Course: GE 9C Course Title: Essentials of Medicinal and Aromatic Plant Science

Course Outcomes:

Upon successful completion of this course, the students will be able to:

- Proficiency in identifying and utilizing medicinal plant parts for therapeutic purposes in diverse forms.
- Mastery of extraction techniques including hydrodistillation and solvent extraction.
- Comprehensive understanding of cultivation practices, post-harvest handling, and industrial applications of medicinal plants.

Credits:4		Generic Electives 2	
Max. Mar	ks: As per University rules	Min. Passing Marks: As per	University rules
Unit	Topic		No. of Hours
Unit I	Introduction to Medicinal and Aroma occurrence, history, present and future sources, quality control, contributions of re	needs, introduction of rich	15
Unit II	Utilization of Medicinal Plant Parts: juice/decoction, lotion and ointments, oil dressings, poultice.	•	15
Unit III	Extraction Techniques and Phytoches methods for terpenoids, hydrodistillation extraction, isolation methods, factors affects	on, steamdistillation, solvent	20
Unit IV	Cultivation, Processing, and Industria aromatic plant standards and grades, addition, industrial applications, pharactivities, health benefits.	post-harvest handling, value	10

Recommended Readings:

- Shiva, M.P., Aromatic and Medicinal Plants: Yielding Essential oil for Pharmaceutical Perfumery and Cosmetic Industry and Trade.
- Verma and Joshi, Post Harvest Technology of Fruits and Vegetables, Handling, Processing, Fermentation and Waste Management.
- C. Shukla, Plant Constituents and their Mechanism of Action as Pesticide, Lambert Academic Publishing, Germany
- Egbuna, J. Chinenye Ifemeje, S. C. Udedi, S. Kumar, Phytochemistry: Vol. 1, Fundamentals, Modern Techniques, and Applications,
- Atta-ur-Rahman, Studies in Natural Products Chemistry, Elsevier.

mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Semester-X

MASTER'S IN CHEMISTRY

DISCIPLINE SPECIFIC COURSEE (DSC 10) Advanced Spectroscopic Techniques II Advanced Experimental Chemistry-IV

No. of Hours-75

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

		Credi	it distributio	on of the Course	Eligibili	ty Pre-
Course Title	Credits	Lecture	Tutorial	Practical/Practice	criteria	requisite of the course (if any)
DSC: AdvancedSpectrosc opic Techniques II AdvancedExperime ntal Chemistry-IV	4	3	-	1	Chemist in Bachel of Science	lor
MASTER'S IN CHEMISTRY						
Programme: Master's in Chemistry		Yea	r: V	Se	emester: X	
v					Pa	per: DSC 10

Subject: Chemistry

Course: DSC 10 Course Title: AdvancedSpectroscopic Techniques II

Course Outcomes:

- Understand structure elucidation of various compounds through numerical problems.
- Master the principles and techniques of Mass Spectrometry, including ion production methods, fragmentation patterns and interpretation of mass spectra for organic compounds.
- Understand the principle and applications of Electron Spin Resonance (ESR) and Mossbauer Spectroscopy, including zero field splitting, hyperfine coupling, spectral parameters and structure elucidation through spectral analysis.
- Gain proficiency in Mossbauer spectroscopy and and X-ray differection methods and their applications.

Credits:	3	Discipline Specific Course	
Ma	ax. Marks: As per University rules	Min. Passing Marks: As per University rules	
Unit	Торі	c	No. of Hours
Unit I	Molecular dissymmetry and chir circularly polarised lights, circular bir ORD and CD curves, Cotton effect. diagrams, helicity. Application of C stereochemical problems.	efringence and circular dichroism, The axial haloketone rule, octant	10
Unit II	Mass Spectrometry: Introduction, ion	n production-EI, CI, FD and FAB,	

Recommended Readings

• Pavia, Lampman, Kriz, Spectroscopy, Books/Cole; Vyvyan

Electron Microscopy: TEM, SEM

- P.S. Kalsi, Spectroscopy of Organic Compounds, New Age International Publishers;
- Silverstein, Robert M.; Webster, Francis X.; Kiemle, Spectrometric Identification of Organic Compounds.
- M. L. Martin, J.J. Delpeach and G.J. Martin, Heyden, Practical NMR Spectroscopy,
- Colin N. Banwell and Elaine M. Mc Cash, Fundamentals of Molecular Spectroscopy, Tata McGraw Hill.
- R.J. Abraham, J. Fischer and P. Loftus, Introduction to NMR Spectroscopy, Wiley

Suggested Continuous Evaluation Methods:

Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online content:

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

MASTER'S IN CHEMISTRY					
Programme: Master's in Cher	Programme: Master's in Chemistry Year: V Paper: DSC				
Subject: Chemistry					
Course: DSC	Course Title	e: AdvancedExperimental (Chemistry – IV (Practical)		

Course Outcomes:

- Upon completion of this course, the students will perform the inorganic exercise related to semimicro analysis and preparation of various coordination compounds.
- They will also learn to determine stability constant of metal complexes by Job's method. They can separate metal ions using paper chromatography.
- They will have the knowledge and skills to separate and identify three components in the given organic mixture.
- They will be able to learn the extraction of organic compounds from natural sources.
 Spectroscopic exercise will train them to interpret the spectral data organic compounds and will make them job ready for suitable industries.
- The students of physical chemistry group will learn the experimental setting up and determination of stability constant, transport number, liquid junction potential by different methods.
- They will learn the conductometric determination of equivalent conductivity, determination of degree of dissociation, pH determination.
- They will be able to check the validity of Ostwald dilution law, Langmuir adsorption isotherm.

Credits:4	D	iscipline Specific Course	
Max	a. Marks: As per University rules	Min. Passing Marks: As per Uı	niversity rules
Unit	Topic		No. of Hours
Unit I	Laboratory hazards and saf	ety precautions	5
Unit II	Inorganic Chemistry		
	A. To determine the composition of Cu-ED	TA complex by Job's method	
	B. Inorganic synthesis	-	
	Synthesis of selected inorganic compo	ounds/ complexes and their	
	characterization by IR, electronic sp	•	25
	Mossbauer, ESR nd magnetic susc	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	25
	Selection can be made from the fol	•	
	existed literature.	towing of any other from the	
		of trans-dichlorobis	
	(ethylenediamine)cobalt(III) chloride:		
	(ii) Metal acetylacetonates: [Cr(acac) ₃]	j; Vanadyl acetylacetonate,	
	$[Cu(acac)_2. H_2O etc.$		
	(iii) Ferrocene		

- (iv) Cr(II) complexes: [Cr $(H_2O)_6$] $(NO_3)_3$. $3H_2O$; [Cr $(H_2O)_4$ Cl₂] Cl.2 H_2O ; [Cr $(en)_3$]Cl₃
- (v) Tin (IV) iodine, Tin(IV) choride, Tin(II) iodine.
- (vi) Mixed valence dinuclear complexes of manganese (III, IV).
- (viii) Tris(thiourea) copper (I) sulphate: [Cu[(NH₂)₂CS]₃]₂.SO₄.2H₂O
- (ix) Cis-bis(glycinato) copper (II) monohydrate: Cis-[Cu(glyo)₂(H₂O)
- (x) Trans-potassium-dioxalato diaqua chromate(III) dihydrate: $K[Cr(C_2O_4)_2(H_2O)_2].2H_2O$
- (xi) Synthesis of iron oxide nano particles and its possible characterization
- **(C) Chromatography:** separation of cations and anions by paper/TLC/Ion Exchange chromatography
- **(D) Quantitative analysis** of metal ions involving volumetric (by complexometric titration) and gravimetric analysis (Copper, Nickel, Zinc, Silver, Magnesium).

Unit III | **Organic chemistry**

A. Qualitative analysis

Separation, purification and identification of the components of a mixture of three organic compounds (three solids or two liquids and one solid, two solids and one liquid), using TLC for checking the purity of the separated compounds, chemical analysis, IR, PMR and Mass Spectral data (sets of spectra may be provided to Students for characterization of components).

(B) Extraction of Organic Compounds from Natural Sources

- I) Isolation of caffeine from tea leaves.
- II) Isolation of casein from milk (the students are required to try some typical colour reactions of proteins).
- III) Isolation of lactose from milk (purity of sugar should be checked by TLC, PC and Rf value reported).
- IV) Isolation of nicotine dipicrate from tobacco.
- V) Isolation of cinconine from cinchona bark.
- VI) Isolation of piperine from black pepper.
- VII) Isolation of lycopene from tomatoes.
- VIII) Isolation of β -carotene from carrots.
- IX) Isolation of oleic acid from olive oil (involving the preparation complex with urea and separation of linoleic acid).
- X) Isolation of eugenol from cloves.
- XI) Isolation of limonene from citrus fruits
- (C) Extraction, TLC, GC/ HPLC of essential oils from natural products

25

55 I). Extractionfrom Coriander Seeds II). Extraction from Ajwain Seeds III. Spectroscopy Identification of organic compounds by the analysis of the spectral data (UV, IR, PMR, CMR & MS) **Unit-IV Physical Chemistry** 1. Study of complex formation by the following methods and determination of stability constant wherever practicable: 2. Cryoscopy 3. Electrical Methods 4. E.M.F. 25 5. Determination of transport number. 6. Determination of liquid junction potential. 7. Determination of the charge on colloidal particle. 8. Determination of λ (max) of compounds and verification of Beer's law. 9. Validity of Langmuir's adsorption isotherm. 10. Determination of partial molar volume of solute. 11. Determination of the following thermodynamic parameters of a reaction 12. Enthalpy of activation. 13. Entropy of activation. 14. Free energy change. 15. Equilibrium constant. 16. Frequency factor 17. Conductometric determination of the equivalent conductivity at infinite dilution of a strong electrolyte. 18. Determination of the dissociation constant of a weak acid by conductivity method. 19. Conductometric determination of the equivalent conductivity at infinite dilution of a weak electrolyte. 20. Validity of Ostwald's dilution law. 21. Determination of of dissociation/ association the degree

22. Determination of the formula of silver ammonia complex & copper

conductometrically.

ammonia complex.

- 23. Kinetic Study of the primary salt effect
- 24. Determination of the velocity constant, order of the reaction and energy of activation for saponification of ethyl acetate by sodium hydroxide conductometrically.
- 25. Determination of pH by EMF.
- 26. Hydrolysis of the salts by cryoscopic method.
- 27. Determination of strengths of halides in a mixture potentiometrically.
- 28. Determination of the valency of mercurous ions potentiometrically.
- 29. Determination of the strength of strong and weak acids in a given mixture using a potentiometer/pH meter.
- 30. Verification of the law of photo-chemical equivalence.
- 31. Determination of the velocity constant of acid catalyzed hydrolysis of an ester.
- 32. Determination of activation energy of a reaction.
- 33. Determination of Frequency factor of a reaction by kinetic studies.
- 34. Validity of Arrhenius equation.
- 35. Determination of the effect of change in temperature on rate constant of a reaction.
- 36. Determination of the effect of change in concentration of the reactants on rate constant of a reaction.
- 37. Determination of the effect of change in concentration of the catalyst on rate constant of a reaction.
- 38. Determination of the effect of change in ionic strength on the rate constant of a reaction.
- 39. Determination of the rate constant for the oxidation of iodide ions by hydrogen peroxide.
- 40. Flowing Clock reactions (Ref. Experiments in Physical Chemistry by Showmaker).
- 41. Study of the adsorption of an acid by charcoal.
- 42. Validity of Freundlich's Adsorption isotherm.
- 43. Determination of Partition Coefficients.
- 44. Determination of molecular surface energy of a liquid by Stalagmometer method.

45. Determination of association factor of the given liquid by drop-pipette method.

Note: Choice of practical as per specialization each 30 Hrs. Allocation of marks - External assessment: Total marks 75 (Each exercise carries 20 marks; Viva 15); Internal assessment: Total marks 25 (Record 15; attendance 10). It is compulsory to perform three experiments from any one of thespecial papers.

Recommended Readings

- J. Mendham, Vogel's Quantitative Chemical Analysis, Pearson, 2009.
- D. C. Harris, Quantitative Chemical Analysis. 6th Ed., Freeman (2007) Chapters 3-5.
- Harris, D.C. Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.
- S.M. Khopkar, Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009.
 D.A. Skoog, F.J. Holler and T.A. Nieman, Principles of Instrumental Analysis, Cengage Learning India Edition

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online content:

https://www.labster.com/chemistry-virtual-labs/

https://www.vlab.co.in/broad-area-chemical-sciences

http://chemcollective.org/vlabs

Semester-X

Master's in chemistry

DISCIPLINE SPECIFIC ELECTIVE (DSE 10 A) Organometallic Chemistry

No. of Hours- 60

Paper: DSE 10 A

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course
						(if any)
DSE 10 E: General					Chemistry	
and Organometallic	4	4	-	-	in Bachelor	-
Chemistry					of Science	
MASTER'S IN CHEMISTRY						
Programme: Master's in Chemistry Year: V				Vear: V	Sem	ester: X

Subject: Chemistry

Course: DSE 10 A Course Title: Organometallic Chemistry

Course Outcomes:

Upon successful completion of this course, the students will be able to:

• Understand the organometallic compounds of transition metals with sigma and ni bonding ligands

- They will also get acquainted with the chemistry of fluxional molecules.
- The students will learn about chemistry and mechanism of homogeneous catalytic reactions. It will assist them to get a suitable job in the relevant industrial and scientific field.

Credits:	4	Discipline Specific Elective		
Max. Ma	arks: As per University rules	ules Min. Passing Marks: As per Univer		
Unit	Торіс		No. of Hours	
Unit I	Organic Derivatives of Transition Metatransition metals, nature of metal carbo stability, decomposition pathways, stabiliz s-block and p-block elements, synthesis, s between transition and non-transition elements.	10		
Unit II	Compounds of Metal-Carbon Multi-Organometallic Compounds: Synthesis, and structural features of π -bonded or complexes) with unsaturated organic chelating olefinic ligands, allyl, diencyclopentadiene, dienyl-cyclopentadienyl, complexes. Important reactions relating to attack on ligands, role in organic synthetic equilibria in compounds such as $\dot{\eta}^3$ - ally characterization.	properties, nature of bonding gano-metallic compounds (π -molecules: alkenes, alkynes, nes-butadiene, cyclobutadiene, cyclohexadienyl and arene o nucleophilic and electrophilic esis. Fluxionality and dynamic	15	
Unit III	Mechanism of Some Catalytic Reaction catalysis, oxidative-addition, migratory in homogeneous catalytic Hydrogenation, Z olefins, catalytic reactions involving hydroformylation of olefins (oxo-reaction)	10		
Unit IV	Silicates and Aluminosilicates: Silicates structure and applications of na Aluminosilicates: chemistry of felds classification, structure and applications montmorilonite clay, synthesis of pillare applications of clays and pillared clays as of silicates.	10		
Unit V	Problem based on the above syllabus		15	

Recommended Readings

- J. P. Collman, L. S. Hegsdus, J. P. Norton and R. G. Finke, Principle and Application of Organotransition Metal Chemistry, University Science Books.
- R. H. Crabtree, The Organometallic Chemistry of the Transition Metals, John Wiley
- J. Person, Metallo-organic Chemistry, Wiley.
- R. C. Mehrotra and A. singh, Organometallic Chemistry, New Age International.
- J. E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry: Principle of structure and Reactivity, Pearson Education.
- N. L. H. Green, Organometallic Compounds, Chapman & Hall, U.K.

• G. E. Coates, M. L. H. Green., P. Pwell, Principles of Organometallic Chemistry, Chapman & Hall, U.K.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online courses:

https://tech.chemistrydocs.com/Books/Organic/A-Guidebook-of-Organic-Reaction-Mechanism-by-Peter-Sykes.pdf

https://nptel.ac.in/courses/104/101/104101079/

https://onlinecourses.nptel.ac.in/noc21 cy12/preview

https://nptel.ac.in/courses/104/108/104108062/

https://onlinecourses.nptel.ac.in/noc21 cy36/preview

https://onlinecourses.nptel.ac.in/noc22 cy05/preview

https://onlinecourses.nptel.ac.in/noc22 cy05/preview

https://nptel.ac.in/courses/104/101/104101100/

Semester-X

Master's in chemistry

DISCIPLINE SPECIFIC ELECTIVE (DSE 10B) Metal Ligand Bonding and Polymer Chemistry

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

		Credit	t distributi	on of the Course	Eligibility	Pre-requisite	
Course Title	Credits	Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)	
DSE 10B: Metal					Chemistry	,	
Ligand Bonding and	4	4	-	-	in Bachelo	r -	
Polymer Chemistry					of Science		
		MAST	ER'S IN C	CHEMISTRY			
Programme: Master's in Chemistry Year: V Semester: X					emester: X		
					P	aper: DSE 10B	
Subject: Chemistry							
Course: DSE 10B		Cours	se Title: Mo	etal Ligand Bonding	and Polyme	r Chemistry	

Course Outcomes:

- Upon successful completion of this course, the students will be able to:
- Explain the molecular orbital theory of transition metal complexes.
- Gain an understanding of Sigma and pi bonding in transition metal complexes through molecular orbital energy diagrams.
- Acquire knowledge about the chemical analysis of polymers.

Credits:4	Discipline Specific Elective	60
	s: As per University rules Min. Passing Marks: As per	University rules
Unit	Topic	No. of Hours
Unit I	Metal-Ligand Bonding: Sigma bonding in octahedral complexes: Classification of metal valence orbitals into sigma symmetry, formation of ligand group orbitals (LGOs) of sigma symmetry, Formation of molecular orbitals of sigma symmetry, construction of molecular orbital energy level diagram involving only sigma bond contribution from ligands, pi bonding in octahedral complexes: Classification of metal valence orbital into pi symmetry, Formation of LGOs of pi symmetry. Formation of pi MOs and construction of molecular orbital energy level diagram involving sigma and pi contribution from pi donor ligands, Sigma and pi bonding intetrahedral complexes and square planar complexes.	
Unit II	Basics of Inorganic Polymers: Importance of polymers, basic concepts: monomers, repeat units, degree of polymerization. Linear, branched and network polymers. Classification of polymers, polymerization: condensation, addition, radical chain-ionic and co-ordination and co-polymerization. Polymerization conditions and polymer reactions Kinetics of polymerization. Stereochemistry and mechanism of polymerization. Polymerization in homogeneous and heterogeneous systems.	10
Unit III	Structure and Properties: Morphology and order in crystalline polymers-configurations of polymer chains: Crystal structures of polymers. Morphology of crystalline polymers, strain-induced morphology, crystallization and melting. Polymer structure and physical properties-crystalline melting point (TM); melting points of homogeneous series, effect of chain, flexibility and other steric factors, entropy and heat of fusion. The glass transition temperature (Tg), relationship between Tm and Tg, effects of molecular weight, diluents, chemical structure, chain topology, branching and cross linking.	10
Unit IV	Polymer Characterization: Polydispersion, average molecular weight concept: number average, weight average and viscosity average molecular weights. Polydispersity and molecular weight distribution. Measurement of molecular weight: end-group, viscosity, light scattering, osmotic and ultacentrifugation methods. Analysis and testing of polymers, chemical analysis of polymers, spectroscopic methods, X-ray diffraction study. Microscopy. Thermal analysis and physical testingtensile strength. Fatigue impact. Tear resistance. Hardness and abrasion	15
	resistance.	

Recommended Readings:

- F. A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, Advance Inorganic Chemistry, Sixth Edition, John Wiley & Sons, New York, 2003.
- J. D. Lee, Concise Inorganic Chemistry, Fifth Edition, Wiley India, 2012.
- Atkins, Overton, Rourke, Weller and Armstrong, Inorganic Chemistry, Oxford University Press.
- J. E. Huheey, E. A Keiter and R. L. Keiter, Inorganic Chemistry Principles of Structure and Reactivity, Fourth Edition, Pearson Education, 2003.
- W. W. Porterfield, Inorganic Chemistry: A Unified Approach, Elsevier.
- G. Wulfsberg, Inorganic Chemistry, Viva Books.
- G. L. Miessler and D. A. Tarr, Inorganic Chemistry, Pearson Education.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online contents:

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-cy19/

https://onlinecourses.nptel.ac.in/noc22 cy02/preview

https://nptel.ac.in/courses/104/105/104105033/

https://nptel.ac.in/courses/104/106/104106089/

http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000005CH/P000658/M014009/ET/1456899

566CHE P3 M5 etext.pdf

http://ddugu.ac.in/epathshala content1.aspx

https://www.uou.ac.in/sites/default/files/slm/BSCCH-301.pdf

Semester-X Master's in chemistry

DISCIPLINE SPECIFIC ELECTIVE (DSE 10 C) Photo Inorganic Chemistry

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit	Credit distribution of the Course			Pre-requisite of	
		Lecture	Tutorial	Practical/Practi	ce criteria	the course (if any)	
DSE 10 C: Photo					Chemistry		
Inorganic	4	4	-	-	in	-	
Chemistry					Bachelor		
					of Science		
		MA	STER'S IN	CHEMISTRY			
Programme: Maste	r's in Che	mistry		Year: V		Semester: X	
Paper: DSE 10C							
Subject: Chemistry							
Course: DSE 10C	Course: DSE 10C Course Title: Photo Inorganic Chemistry						
Course Outcomes:							

Upon successful completion of this course, the students will be able to:

- Explain the basica of photochemistry.
- Gain an understanding of photochemical reactions.
- Acquire knowledge about the chemical analysis of polymers

Min. Passing Marks: As per University rules	Credits: 4		
Unit I Basics of Photochemistry: Absorption, excitation, photochemical laws, electronically excited states-life times, measurements of the times. Flash photolysis, stopped flow techniques. Energy dissipation by radiative and non-radiative processes, absorption spectra, Franck-Condon principle, photochemical stages- primary and secondaryprocesses. Photochemical Reactions: Interaction of electro magnetic radiation with matter, types of excitations, fate of excited molecule, quantum yield, transfer of excitation energy, actinometry. Singlet molecular oxygen reactions. Photochemical formation of smog. Photo- degradation of polymers. Photochemistry of vision. Unit II Properties of Excited States and Excited States of Metal Complexes: Structure, dipole moment, acid-base strengths, reactivity. Photochemical kinetics-calculation of rates of radiative processes. Biomolecular deactivation-quenching. Excited states of metal complexes: Charge-transfer spectra, charge transfer excitations, methods forobtainingcharge-transfer spectra, charge transfer excitations, methods forobtainingcharge-transfer spectra. Unit III Ligand Field Photochemistry: Photosubstitution, photo-oxidation andphoto-reduction, lability and selectivity, zero vibrational levels of ground state and excited state, energy content of excited state, zero-zero spectroscopic energy, development of the equations for redox potentials of the excited states. Unit IV Redox Reactions by Excited Metal Complexes: Energy transfer underconditions of weak interactionandstronginteraction-exciplex formation, conditions of the excited states to be useful as redox reactants, excited electron transfer, metal complexes as attractive candidates (2,2'-bipyridine and 1,10-phenenthroline complexes), illustration of reducing and oxidizing character of Ru ²⁺ bipyridyl complex (comparison with [Fe(bipy)3]); roleofspin-orbitcoupling- life time of these complexes. Application of redox processes of electronically excited states for catalytic purpose, transformation of low energy			
electronically excited states-life times, measurements of the times. Flash photolysis, stopped flow techniques. Energy dissipation by radiative and non-radiative processes, absorption spectra, Franck-Condon principle, photochemical stages- primary and secondaryprocesses. Photochemical Reactions: Interaction of electro magnetic radiation with matter, types of excitations, fate of excited molecule, quantum yield, transfer of excitation energy, actinometry. Singlet molecular oxygen reactions. Photochemical formation of smog. Photo- degradation of polymers. Photochemistry of vision. Unit II Properties of Excited States and Excited States of Metal Complexes: Structure, dipole moment, acid-base strengths, reactivity. Photochemical kinetics-calculation of rates of radiative processes. Biomolecular deactivation-quenching. Excited states of metal complexes: comparison with organic compounds, electronically excited states of metal complexes. Charge-transfer spectra, charge transfer excitations, methods forobtainingcharge-transferspectra. Unit III Ligand Field Photochemistry: Photosubstitution, photo-oxidation andphoto-reduction, lability and selectivity, zero vibrational levels of ground state and excited state, energy content of excited state, zero-zero spectroscopic energy, development of the equations for redox potentials of the excited states. Unit IV Redox Reactions by Excited Metal Complexes: Energy transfer underconditions of weak interactionandstronginteraction-exciplex formation, conditions of the excited states to be useful as redox reactants, excited electron transfer, metal complexes as attractive candidates (2,2'-bipyridine and 1,10-phenenthroline complexes), illustration of reducing and oxidizing character of Ru ²⁺ bipyridyl complex (comparison with [Fe(bipy)3]); roleofspin-orbitcoupling- life time of these complexes. Application of redox processes of electronically excited states for catalytic purpose, transformation of low energy reactants into high energy products, chemical energy			No. of Hours
Complexes: Structure, dipole moment, acid-base strengths, reactivity. Photochemical kinetics-calculation of rates of radiative processes. Biomolecular deactivation-quenching. Excited states of metal complexes: comparison with organic compounds, electronically excited states of metal complexes. Charge-transfer spectra, charge transfer excitations, methods forobtainingcharge-transferspectra. Unit III Ligand Field Photochemistry: Photosubstitution, photo-oxidation andphoto-reduction, lability and selectivity, zero vibrational levels of ground state and excited state, energy content of excited state, zero-zero spectroscopic energy, development of the equations for redox potentials of the excited states. Unit IV Redox Reactions by Excited Metal Complexes: Energy transfer underconditions ofweak interactionandstronginteraction-exciplex formation, conditions of the excited states to be useful as redox reactants, excited electron transfer, metal complexes as attractive candidates (2,2'-bipyridine and 1,10-phenenthroline complexes), illustration of reducing and oxidizing character of Ru ²⁺ bipyridyl complex (comparison with [Fe(bipy)3]); roleofspin-orbitcoupling- life time of these complexes. Application of redox processes of electronically excited states for catalytic purpose, transformation of low energy reactants into high energy products, chemical energy	Unit I	electronically excited states-life times, measurements of the times. Flash photolysis, stopped flow techniques. Energy dissipation by radiative and non-radiative processes, absorption spectra, Franck-Condon principle, photochemical stages- primary and secondaryprocesses. Photochemical Reactions: Interaction of electro magnetic radiation with matter, types of excitations, fate of excited molecule, quantum yield, transfer of excitation energy, actinometry. Singlet molecular oxygen reactions. Photochemical formation of smog. Photo- degradation of	10
andphoto-reduction, lability and selectivity, zero vibrational levels of ground state and excited state, energy content of excited state, zero-zero spectroscopic energy, development of the equations for redox potentials of the excited states. Unit IV Redox Reactions by Excited Metal Complexes: Energy transfer underconditions of weak interactionandstronginteraction-exciplex formation, conditions of the excited states to be useful as redox reactants, excited electron transfer, metal complexes as attractive candidates (2,2'-bipyridine and 1,10-phenenthroline complexes), illustration of reducing and oxidizing character of Ru ²⁺ bipyridyl complex (comparison with [Fe(bipy)3]); roleofspin-orbitcoupling- life time of these complexes. Application of redox processes of electronically excited states for catalytic purpose, transformation of low energy reactants into high energy products, chemical energy	Unit II	Complexes: Structure, dipole moment, acid-base strengths, reactivity. Photochemical kinetics-calculation of rates of radiative processes. Biomolecular deactivation-quenching. Excited states of metal complexes: comparison with organic compounds, electronically excited states of metal complexes. Charge-transfer spectra, charge transfer	10
underconditions of weak interactionandstronginteraction-exciplex formation, conditions of the excited states to be useful as redox reactants, excited electron transfer, metal complexes as attractive candidates (2,2'-bipyridine and 1,10-phenenthroline complexes), illustration of reducing and oxidizing character of Ru ²⁺ bipyridyl complex (comparison with [Fe(bipy)3]); roleofspin-orbitcoupling- life time of these complexes. Application of redox processes of electronically excited states for catalytic purpose, transformation of low energy reactants into high energy products, chemical energy	Unit III	andphoto-reduction, lability and selectivity, zero vibrational levels of ground state and excited state, energy content of excited state, zero-zero spectroscopic energy, development of the equations for redox potentials	10
Unit V PROBLEM BASED ON THE THE ABOVE 15		underconditions ofweak interactionandstronginteraction-exciplex formation, conditions of the excited states to be useful as redox reactants, excited electron transfer, metal complexes as attractive candidates (2,2'-bipyridine and 1,10-phenenthroline complexes), illustration of reducing and oxidizing character of Ru ²⁺ bipyridyl complex (comparison with [Fe(bipy)3]); roleofspin-orbitcoupling- life time of these complexes. Application of redox processes of electronically excited states for catalytic purpose, transformation of low	

Recommended Readings:

- A.W.AdamsonandP.D. Fleischauer, Conceptof Inorganic Photochemistry, Wiley.
- Inorganic Photochemistry, J. Chem. Educ., vol. 60, no.10,1983.

- J. Lippard, Progressin Inorganic Chemistry, Vol.30, ed. Wiley.
- CoordinationChem. Revs., 1981, Vol. 39, 121,131; 1975, 15,321; 1990, 97, 313.
- V. Balzariand Carassiti, Photochemistry of Coordination Compounds, Academic Press.
- G.J. Ferraudi, Elements of Inorganic Photochemistry, Wiley-Eastern.
- K.K. Rohtagi-Mukherji, Fundamentals of Photochemistry, Wiley-Eastern.
- A. Gilbert and J. Baggott, Essentials of Molecular Photochemistry, Blackwell Scientific Publication.
- N.J. Turro, W.A. Benjamin, Molecular Photochemistry,
- A. Cox and T. Camp, Introductory Photochemistry, McGraw-Hill.
- R.P. Kundall and A. Gilbert, Photochemistry, Thomson Nelson.
- J. Coxon and B. Halton, Organic Photochemistry, Cambridge UniversityPress.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Semester-X

MASTER'S IN CHEMISTRY

DISCIPLINE SPECIFIC ELECTIVE (DSE 10 D) Heterocyclic Chemistry

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit Lecture	distribution Tutorial	Practical/Practice	Eligibility criteria		Pre- requisite of the course (if any)
DSE 10 D: Heterocyclic Chemistry	4	4	-	-	Chemistry in Bachelor of Science		-
MASTER'S IN CHEMISTRY							
Programme: Master's in Chemistry Year: V						ster: X r: DSE 10D	
Subject: Chemistry							
Course: DSE 10 D Course Title: Heterocyclic Chemistry							
Course Outcomes:							
Upon successful completion	of this cou	rse, the stu	dents will b	e able to:			
 Understand the advanced 	aspects of	heterocycl	lic chemistr	y.			
• This will provide broader	areas of o	pportunitie	es in these r	elated industries.			
Credits:4 Discipline Specific Elective							
Max. Marks: As per University rules Min. Passing Mark				ks: As pe	er Univ	ersity rules	
Unit					•		of Hours

		64
Unit I	Aromatic and Non aromatic heterocycles- Systematic nomenclature (Hantzsch-Widman vystem) for monocyclic, fused and bridged heterocycles. General chemical behaviour of aromatic heterocycles, classification, Strain - hood angle and torsional strains and their consequences in small ring heterocycles. Conformation of six-membered heterocycles with reference to molecular geometry, barrier to ring inversion, pyramidal inversion, Stereo-electronic effects, aromatic and related effects. Attractive interactions hydrogen bonding and intermolecular nucleophilic, electrophilic interaction	15
Unit II Unit III	Small ring and benzo-fused five membered heterocycles-Three-membered and four-membered heterocycles-synthesis and reactions of aziridines, oxetanes and thietanes. Synthesis and reactionds including medicinal applications of benjoapyrroles, benzofurans and benzothiophenes Six membered heterocycles Synthesis and reactions of pyrylinum selts and pyrones accumering and	10
	Sythesis and reactions of pyrylinum salts and pyrones, coumarins and chromomes. Synthesis and reactions of diazines.	10
Unit IV	Seven or large membered heterocycles Synthesis and reactions of azepines, oxepines, thiepines, diazepines thiaropines, arocines, diazocines, dictopines and dithiocines	10
Unit V	PROBLEMS REATED TO THE ABOVE SYLLABUS	15

Recommended Reading

- R.R. Gupta, M. Kumar and V. Gupta, Heterocyclic Chemistry Vol. 1-3, Springer Verlag.
- G.R. Newkome and W.W. Paudler, Contemporary Heterocyclic Chemistry, Wiley-Inter Science.
- R.M. Acheson, An Introduction to the Heterocyclic Compounds, John Wiley.
- A.R. Katritzky and C.W. Rees, Comprehensive Heterocyclic Chemistry, eds. Pergamon press.
- Heterocyclic Chamuty Vol. 1 & R.K. Gupta, M. Kumar and V. Taupta, Sponger Verlag
- The Chemistry of Heterocycles. 7. Elcher and S. Hauptmann. Thieme.
- Heterocyelle Chemistry, L.A. Jouke, K. Mills and GF. Smith, Chapman and Hall. Heterocyclic Chemistry, TL Gilchrist, Longman Scietific Technical
- Contemporary Huterocyclic Chennistry, UK. Newkome and W.W. Pauller, Wiley-Inter Science
- An introduction to the Heterocyelic Compounds, R.M. Acheson, John Wiley Comprehensive Heterocyclic Chemistry, A.R. Katritzky and C.W. Rees, eds. Pergame
- Natural Products: Chemistry and Biological Significance, J.Mann, R.S. Davidson, 1
- Hebba, DV. Banthrope and J.R. Harborne, Longman. Essex
- Organic Chemistry, Vol 2, 1.1. Finar, ELBS.
- Stereselective Synthesis A Practical Approach, M. Nagradi, VCI

Suggested equivalent online courses:

https://swayam.gov.in/

https://www.coursera.org/learn/physical-chemistry

Semester-X

MASTER'S IN CHEMISTRY

DISCIPLINE SPECIFIC ELECTIVE (DSE 10 E) Chemistry of Natural Products

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

		Credit	distributi	on of the Course	Eligibilit	y Pre-		
Course Title	Credits	Lecture	Tutorial	Practical/Practice	criteria	requisite		
						of the		
						course (if		
						any)		
DSE 10 E: Chemistry of					Chemistry	in		
Natural Products	4	4	-	-	Bachelor	of -		
					Science			
MASTER'S IN CHEMISTRY								
Programme: Mas	Programme: Master's in Chemistry Year: V Semester: X							
Paper: DSE 10 F								
Subject: Chemistry								
Course: DSE 10 E Course Title: Chemistry of Natural Products								
Carriage Oritagement								

Course Outcomes:

Upon successful completion of this course, the students will be able to:

 Acquire knowledge of all the natural products and heterocyclic compounds such as terpenoids, alkaloids, carotenoids, steroids and plant pigments which form the back bone of natural systems of medicines such as Ayurveda, Homeopathy and Yunani system of medicine.

Credits:4		Discipline Specific Elective		
Max.	Max. Marks: As per University rules Min. Passing Marks: As per			
Unit	Topic		No. of Hours	
Unit I	Vitamins: Classification, occurrence, c E, structure elucidation and synthesis, d	10		
Unit II	Terpenoids and Carotenoids: Classif general methods of structure determinenthal and β-carotene. Plant Pigments: Occurrence, nomeno and cyanidine. Biosynthesis of flavonoid	10		
Unit III	Steroids: Occurrence, physiological hydrocarbons, stereochemistry, structure		10	

Recommended Reading

- Chemsitry of Natural products, B.A. Naga Sampagi (Author), S. Minakshi (Author), S. V. Bhat (Author)
- L. Finar, Vol. I & II, ELBS.

Semester-X

Master's in chemistry

DISCIPLINE SPECIFIC ELECTIVE (DSE 10 F) **Medicinal Chemistry**

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

		Credit	distributi	on of the Course	Eligibility	Pre-
Course Title	Credits	Lecture	Tutorial	Practical/Practice	criteria	requisite of the course (if any)
DSE 10 F: Medicinal Chemistry	4	4	-	-	Chemistry in Bachelor of Science	-
]	MASTER'	S IN CHE	MISTRY		
Programme: Master's in Chemistry			Yes	Year: V Semester: X Paper: DSE		
Subject: Chemistry						
Course: DSE 10 F				rse Title: Medicinal	Chemistry	
Course Outcomes:						

Course Outcomes:

Upon successful completion of this course, the students will be able to:

After completion of this course, the students will be able to understand the process of drug designing

and to have some information about antineoplastic Agents, cardiovascular drugs, local anti-infective drugs and antibiotics and psychoactive drugs.

Credits:4		iscipline Specific Elective	
	1	Min. Passing Marks: As per	
Unit Unit I	Торіс		No. of Hours
	Drug Design: Development of new drugs, prodesign, concepts of lead compound and lead prodrugs and soft drug, structure-activity reaffecting bioactivity. Theories of drug act Quantitative structure activity relationship. His QSAR. Concepts of drug receptors. Elementary interactions. Physico-chemical parameters: coefficient, electronic ionization constants, stactivity parameters and redox potentials. Free analysis, relationships between Free-Wilson and ED-50 (Mathematical derivations of equations electrons of equations electrons and the control of the compound and lead prodrugs and soft drug, structure-activity relationship. His parameters are coefficient, electronic ionization constants, stactivity parameters and redox potentials. Free analysis, relationships between Free-Wilson and ED-50 (Mathematical derivations of equations electrons are constants).	15	
Unit II	Pharmacokinetics & Pharmacodynamics absorption, disposition, elimination using pharmacokinetic parameters in defining of therapeutics. Mention of uses of pharmacokin process. Introduction, elementary treatment enzyme inhibition, sulphonamides, membrate metabolism, xenobiotics, biotransformation metabolism in medicinal chemistry.	drug disposition and in etics in drug development of enzyme stimulation, rane active drugs, drug	10
Unit III	Antineoplastic Agents: Introduction, cancer problems, role of alkylating agents and antin cancer. Mention of carcinolytic antibiotic and mentions of the cancer and the cancer and the cancer are cancer.	netabolites in treatment of nitotic inhibitors.	10
	Synthesis of mechlorethamine, cyclophospha mustards and 6- mercaptopurine. Recent chemotherapy. Hormone and natural products.	_	
Unit IV	Psychoactive Drugs-The Chemotherapy of M neurotransmitters, CNS depressants, general ar of hypnotics, sedatives, anti-anxiety drugs, be neurochemistry of mental diseases. Antipsycho antidepressants, butyrophenones, serendipity stereochemical aspects of psychotropic drugs.	naesthetics, mode of action enzodiazepines, buspirone, tic drugs –the neuroleptics,	10
	Synthesis of diazepam, oxazepam, clonazepa ethosuximide, trimethadione, barbiturates glutethimide.		
Unit V	PROBLEMS RELATED TO THE ABOVE		15

Recommended Readings

- Introduction to Medicinal Chemistry, A. Gringuage, Wiley-VCH
- Wilson and Gisvold's Text –Book of Organic Medicinal and Pharmaceutical
- Chemistry, Ed. Robert F. Dorge.
- An introduction to Drug Design, S.S. Pandeya and U.R. Diiock, New Age International.
- Burger's Medicinal Chemistry and Drug Discovery, Vol.- 1 (Chapter 9 and Ch-14), Ed. M.E. Wolf, John Wiley.
- Goodman and Gilman's Pharmacological Basis of Therapeutics, McGraw-Hill.
- The Organic Chemistry of Drug Design and Drug Action, R.B. Silverman, Academic Press.
- Strategies for Organic Synthesis and Design, D. Lednicer, John Wiley.
- Pharmaceutical drug analysis, Ashutosh Kar

Suggested online links:

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

https://nptel.ac.in/courses/104/106/104106106/

https://onlinecourses.nptel.ac.in/noc20_cv16/preview

https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-cy16/

https://nptel.ac.in/noc/courses/noc21/SEM1/noc21-cy05/

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Semester-X

MASTER'S IN CHEMISTRY

DISCIPLINE SPECIFIC ELECTIVE (DSE 10 G) Advanced Chemical Dynamics and Statistical Thermodynamics

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

		Credit distribution of the Course			Eligibility	Pre-
Course Title	Credits	Lecture	Tutorial	Practical/Practice	criteria	requisite of
						the course
						(if any)
DSE 10 G: Advanced					Chemistry	
Chemical Dynamics and	4	4	-	-	in	-
Statistical					Bachelor	
Thermodynamics					of Science	

MASTER'S IN CHEMISTRY						
Programme: Master's in Chemistry	Programme: Master's in Chemistry Year: V Semester: X					
		Paper: DSE10 G				
Subject: Chemistry						

Course: DSE 10 G | Course Title: Advanced Chemical Dynamics and Statistical Thermodynamics Course Outcomes:

- Acquire knowledge on chemical dynamics, kinetics in solution, fast chemical reactions, statistical thermodynamics and thermodynamic equilibrium. Develop expertise in advanced chemical dynamics, encompassing reaction rate theories, unimolecular reactions, chain reactions and kinetic isotope effects.
- Master statistical thermodynamics principles, including thermodynamic probability, partition functions and statistical distributions for diatomic molecules.
- Understand kinetics in solution, fast chemical reactions and enzyme catalysis, employing experimental techniques like stopped flow and flash photolysis.
- Gain proficiency in thermodynamic equilibrium concepts, including free energy, entropy, chemical potential, fugacity, ideal solutions and applications of the Duhem-Margules and Gibbs-Helmholtz equations.

Credits:4	Discipline Specific Elective 1	0 A				
Max. Mar	Max. Marks: As per University rules Min. Passing Marks: As p					
Unit	Topic	No. of Hours				
Unit I	Advanced Chemical Dynamics: Theories of reaction rates: Partition functions (translational, vibrational and rotational) for diatomic molecules and application to rate processes, statistical mechanics of chemical equilibrium, theory of absolute reaction rates, thermodynamical formulation of reactions rates, theories of unimolecular reactions: Lindemann's theory, Hinshelwood's treatment, RRK treatment, Slater's theory (no derivation), Rice-Ramsperger-Kassel-Marcus (RRKM) theory (no derivation), general treatment of chain reactions, branching chains, explosive reactions between hydrogen and oxygen, oxidation of hydrocarbons, polymerization	12				
Unit II	reactions (molecular and free radical), oscillatory reactions, kinetic isotope effect. Statistical Thermodynamics: Introduction to Statistical Thermodynamics, Thermodynamic probability and entropy, Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics, Partition function: Translational, rotational, vibrational and electronic partition	6				
	functions for diatomic molecules, relation between partition function and various thermodynamic quantities.					
Unit III	Kinetics in Solution and Fast Chemical Reactions: Kinetics in Solution: Influence of solvent reactions between ions, reactions between ions and molecules, reactions involving dipoles, influence of ionic strength, primary and secondary salt effects,	15				
	homogeneous and heterogeneous catalysis, absolute rate theory of heterogeneous reactions. Enzyme Catalysis: Michaelis-Menton mechanism, single and double intermediates, general methods for working out the kinetics of complex enzymatic reactions					

		/0
	Fast Chemical Reactions: Study of kinetics by stopped flow techniques, relaxation methods, flash photolysis and magnetic resonance methods and temperature jump method.	
Unit IV	Thermodynamic Equilibrium: Free energy and entropy of mixing, chemical potential and its use in heterogeneous equilibrium, fugacity, its significance and determination, Ideal solutions and their properties, Duhem-Margules equation and its applicability, Gibb's-Helmholtz equation and its uses, Nernst heat theorem, third law of thermodynamics, entropy determination from the third law of thermodynamics.	12
Unit V	PROBLEM RELATED TO THE ABOVE	15

Recommended Readings

- B. R. Puri, L. R. Sharma and M. S. Pathnia, Physical Chemistry, Milestone Publisher & Distributors, New Delhi
- K. L. Kapoor, Physical Chemistry. Macmillan *Publishers* India Limited.
- K. J. Laidler, Kinetics, Pearson Education India.

•

Suggested Continuous Evaluation Methods: Since the class is conceived as learner-centric and built around tasks that require learners to actively use various language skills, formative assessment can and should be used extensively. Oral presentations, peer interviews, and group tasks can be used for this purpose. The end-semester written examination will test all the areas targeted in the course.

Suggested equivalent online courses:

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEvOVRd1gUJ

https://www.classcentral.com/course/swayam-concepts-of-thermodynamics-13015

https://onlinecourses.nptel.ac.in/noc20 me20/preview

https://www.coursera.org/learn/thermodynamics-intro

https://onlinecourses.nptel.ac.in/noc22 cy14/preview

https://onlinecourses.nptel.ac.in/noc20_cy22/preview

Semester-X

Master's in chemistry

DISCIPLINE SPECIFIC ELECTIVE (DSE 10H) Molecular Orbital Theory and Quantum Mechanics

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite of
		Lecture	Tutorial	Practical/Practice	criteria	the course (if any)
DSE 10H:					Chemistry	
Molecular Orbital					in	
Theory and	4	4	_	-	Bachelor	-
Quantum					of	
Mechanics					Science	
		MAS	STER'S IN	CHEMISTRY		
Programme: Master	's in Cher	nistry		Year: V		Semester: X
						Paper: DSE 10H
Subject: Chemistry						
Course: DSE 10H Course TitleMolecular Orbital Theory and Quantum Mechanics						ntum Mechanics

Course Outcomes:

- Understand of advanced quantum mechanics will help them to explain the related terms. Acquire the knowledge about concept of molecular orbital and valence bond theories will help them to understand the bonding concept.
- a detailed idea about the de Broglie is concept different types of operators Schrodinger wave equation, and application of Schrodinger's Wave Equation to some models, that is particle in 1D 3D box and hydrogen atom

Credits:4	l e e e e e e e e e e e e e e e e e e e	General Elective	
Max. Ma	rks: As per University rules	Min. Passing Marks: As per U	Jniversity rules
Unit	Topic	No. of Hours	
Unit I	Quantum Chemistry-I: de-Broglie conc physical interpretation and properties of way Linear-momentum and Hamiltonian oper mechanics, eigen values, eigen fur orthogonalizaion, derivation of the Schrodi of cartesian and spherical coordinates.	10	
Unit II	Quantum Chemistry-II: Schrodinger's detailed discussion on the applications of S some model systems <i>viz.</i> particles in a 1D-rigid rotator and hydrogen atom.	Schrodinger's wave equation to	10
Unit III	Advanced Quantum Mechanics: Applied quantum chemistry, Angular momentum incommomentum and spin-orbit coupling. Of generalized angular momentum, eigen function eigen values of angular momentum, operator	luding spin coupling of angular ordinary angular momentum, ctions for angular momentum,	10

Recommended Readings

Unit V

- G.W. Castellan, Physical Chemistry, 4th Ed. Narosa.
- R.G. Mortimer, Physical Chemistry, 3rd Ed. Elsevier: NOIDA, UP.

PROBLEMS RELATED TO THE ABOVE SYLLABUS

- F.A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Parts A & B, Plenum: U.S.
- W. M. Horspool, Aspects of Organic Photochemistry, Academic Press.
- T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry Addison-Wesley Educational Publishers, Inc.

15

- J. March, Advanced Organic Chemistry, John Wiley & Sons.
- L. Stryer, Biochemistry, W. H. Freeman & Co.
- P. A. Sykes, Guidebook to Mechanism in Organic Chemistry, Prentice-Hall.
- James H. Clark and Duncan J. Macquarrie, Handbook of Green Chemistry and Technology, Wiley-Blackwell.
- Paul T. Anastas and Tracy C. WilliamsonGreen Chemistry: Frontiers in Benign Chemical syntheses and Processes, Oxford University Press.
- Geoffrey Alan Ozin, A. C. Arsenault and L. Cademartiri, Nanochemistry: A Chemical Approach to Nanomaterials, Royal Society of Chemistry.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online courses:

- https://www.ias.ac.in/article/fulltext/reso/023/03/0277-0290
- https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ
- https://www.ias.ac.in/article/fulltext/reso/023/03/0277-0290

Semester-X

Master's in chemistry

DISCIPLINE-SPECIFIC ELECTIVE (DSE 10 I) Radio and Electroanalytical Techniques

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

				on of the Course	Eligibility	Pre-requisite
Course Title	Credits	Lecture	Tutorial	Practical/Practice	criteria	of the course
						(if any)
DSE 10 I: Radio and					Chemistry	
Electroanalytical	4	4	_	-	in	-
Techniques					Bachelor	
					of Science	
		MAST	ER'S IN (CHEMISTRY		
Programme: M	aster's in	Chemistr	\mathbf{y}	Year: V Sen		emester: X
					Pa	per: DSE 10 I
Subject: Chemistry						
Course: DSE 10 I Course Title: Radio and Electroanalytical Techniques						

Course Outcomes:

- Understand the theory of voltammetry, amperometry and radioanalytical techniques.
- Explain the principle of polarography, CV nd radioanalytical techniques.
- Apply the concepts of polarography voltammetry, amperometry and radioanalytical techniques.
- Appreciate the importace and applications of of polarography, voltammetry, amperometry and radioanalytical techniques.
- Solve the problems based on the concepts of polarography, voltammetry, amperometry and radioanalytical techniques..

Credits:4		Discipline Specific Elective		
Ma	x. Marks: As per University rules	Min. Passing Marks: As per Universit		
Unit	Topic		No. of Hours	
Unit I	Advanced Electroanalytical Techniques: Current Sampled (TAST) Polarography, Note Polarography Potential Sweep methods and Cyclic voltammetry. Stripping Voltar adsorption Chemically and electrolytical ultra- microelectrodes in voltammetry	Normal and Differential Pulse - Linear Sweep Voltammetry	15	
Unit II	Advanced Electroanalytical Teopotentiometry and Polarography Potential Step method- Chronoamperomere	chniques: Amperometry,		

Recommended Readings

- Introduction to Instrumental Analysis, R. D. Braun, Mc Graw Hill (1987)
- Electrochemical Methods, A. J. Bard and L.R. Faulkner, John Wiley, New York, (1980)
- Electroanalytical Chemistry, J.J. Lingane, 2 nd Ed Interscience, New York (1958)
- Modern Polarographic Methods in Analytical Chemistry, A. M. Bond, Marcel Dekker, New York, 1980. 10. Electroanalytical Chemistry, Ed A. J. Bard and Marcel Dekker, New York, (A series of volumes) 11. Techniques and mechanism of electrochemistry, P. A. Christian and A. Hamnett, Blachie Academic and Professional (1994)
- Radiochemistry and Nuclear Methods of Analysis by W. D. Ehmann and D. E. Vance, John Wiley & Sons, New Delhi (1994).
- Principles of Activation Analysis by P. Kruger, Wiley-Interscience, New York (1971). 3. Neutron Activation Analysis by D. De Soete, R. Gijbels and J. Hoste, Wiley Interscience, New York (1972).
- 7.Radioanalytical Chemistry by J. Tolgyessy and M. Kyrs, Vol 1 and 2, Ellis Horwood Ltd, Chichester (1989).
- Modern Methods for Trace Element Determination by C. Vandecasteele and C. B. Block, John Wiley & Sons, Chichester (1993).
- Activation Analysis, Ed. Z. B. Alfassi, Vol 1 and 2, CRC Press, Boca Raton, USA (1991).
- Instrumental Methods of Analysis, 7th Edn by H. H. Willard, L. L. Merritt, J. A. Dean and F. Settle, CBS Publishers and Distributors, New Delhi (2000).
- Instrumental Analysis, Editors, Eds. H. H. Bauer, G. D. Christian and J. E. O'Reilly, 2nd Edn, Allyn and Bacon, Inc., Boston (1991).
- Principles of Instrumental Analysis, 5th Edn, by D. A. Skoog, F. J. Holler and T. A. Nieman. Thomson, Brooks/Cole (2003).

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a

mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online courses:

https://gtu.ge/AgroLib/Vogels_textbook_of_quantitative_chemical_analysis_5th_ed_-

G H Jeffery.MsuCity.pdf

https://media.iupac.org/publications/analytical_compendium/Cha16all.pdf

https://egyankosh.ac.in/bitstream/123456789/43341/1/Unit-13.pdf

https://pubs.acs.org/doi/10.1021/acs.jchemed.7b00361

https://ebooks.inflibnet.ac.in/esp02/chapter/cyclic-voltammetry/

Semester – X MASTER'S IN CHEMISTRY

GENERIC ELECTIVE (GE 10 A)

Corrosion, Energy and Polymers

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

	Credit	t distributi	on of the Course	Eligibility	Pre-requisite		
Course Title	redits	Lecture	Tutorial	Practical/Practice	criteria	of the course	
						(if any)	
GE: 10A					Chemistry		
Corrosion, Energy	4	4	-	-	in Bachelor	-	
and Polymers					of Science		
MASTER'S IN CHEMISTRY							

Programme: Master's in Chemistry Year: V Semester: X
Paper: GE 10A

Subject: Chemistry

Course: GE 10A Course Title: Corrosion, Energy, and Polymers

Course Outcomes:

Upon completion of this course, students will:

- Understand corrosion causes, types, and prevention.
- Analyze battery components, operation, and advantages.
- Gain insight into fuel properties and polymer characteristics.

Credits:4		Generic Electives 1	
Max. Mai	ks: As per University rules	Min. Passing Marks: As per U	niversity rules
Unit	Topic	-	No. of Hours
Unit I	Corrosion: Introduction, cause of corcorrosion, passivity, factors influencing against corrosion.	. • 1	15
Unit II	Batteries: Primary and secondary batter	ries, battery component and their	
	role, Characteristics of the battery, W	orking of the following batteries:	15

		/6
	Pb storage battery, Li battery, Fuel cell, advantage of fuel cell, Dry cell,	
	Mercury Cell, Solar cell and polymer cell.	
	Fuels: Introduction, definition and classification of fuels, Characteristics	
Unit III	of a good fuel, calorific value, determination of calorific value, Use of	15
	coal and its composition, Coal gas, producer gas, and water gas-	
	composition and uses.	
Unit IV	Polymers	
	Fibers: Polyamides, Polethylrne terephthalate (PET), Cellulose acetate,	
	Polyvinyls, Acronitriles	15
	Rubbers/ Elastomers: Natural rubbers, styrene rubber, nitrile rubber	
	Plastics: Polyethylene, polyvinyl Chloride, Polyvinyl acetate, Teflon	

Recommended Readings:

- Alexander V. Dimitrov, Introduction to Energy Technologies for Efficient Power Generation, CRC
 Press
- Charles E. Carraher Jr., Introduction to Polymer Chemistry, CRC Press
- H.A. Kiehne and F. Lampert, Battery Technology Hand book, CRC Press
- Isidor Buchmann, Batteries in a Portable World: A Handbook on Rechargeable Batteries for Non-Engineers, Cadex Electronics Inc.
- Malcolm P. Stevens, Polymer Chemistry: An Introduction Oxford University Press
- Manas Chanda and Salil K. Roy, Introduction to Polymer Science and Chemistry: A Problem-Solving Approach - CRC Press
- Pierre Roberge, Corrosion Engineering: Principles and Practice McGraw Hill Education
- R. Winston Revie and Herbert H. Uhlig, Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering Wiley
- Robert J. Young and Peter A. Lovell, Introduction to Polymers, CRC Press
- Sivakumar Pasupathi, Fuel Cells: Principles, Design, and Analysis, Elsevier

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Semester – X

MASTER'S IN CHEMISTRY

GENERIC ELECTIVE (GE 10 B) Metallurgy and Inorganic Materials

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit	t distributi	on of the Course	Eligibility	Pre-requisite of
		Lecture	Tutorial	Practical/Practice	criteria	the course (if any)
GE: 10 B					Chemistry	
Metallurgy and	4	4	-	-	in	-
Inorganic Materials					Bachelor	
					of Science	
MASTER'S IN CHEMISTRY						
Programme: Master's in Chemistry Year: V						Semester: X
			Paper: GE 10B			
Subject: Chemistry						

Subject: Chemistry

Course: GE 10 B Course Title: Metallurgy and Inorganic Materials

Course Outcomes:

By the end of this course, students will:

- Understand metallurgical processes, from ore extraction to metal refining.
- Analyze and synthesize a variety of inorganic materials, including cement, glass, ceramics, steel, and silicones.

Credits:4		Generic Electives	
Max. Marks: As per University rules Min. Passing Marks: As per		University rules	
Unit	Topic		No. of Hours
Unit I	Metallurgy: Minerals & ore, Crushing of the ore, Concentration of the ore: Gravity separation, Froth Floatation, Leaching, Extraction of Crude metal: Calcinations, Roasting, flux, Smelting.		20
Unit II	Cement, Glass and Ceramics:		
	Cement (Portland Cement): Composition of ce cement	15	
	Glass: different type, manufactures, raw mater glass.		
	Ceramics: Types, Manufacturing Techniques, an		
Unit III	Steel and Paint Steel: Classification of steel, Manufacture of steel Paints: Requisities of a good paint, constituents blue pigment, red pigment, green pigment, black	of pigments, white pigments,	15
Unit IV	Silicones : Preparation, calssifiaction of silico different type of silicones	nes, properties and uses of	10

Recommended Readings:

- R. K. Rajput, Material Science and Metallurgy, S. Chand Publishing
- B. V. Raghavaiah, Engineering Materials and Metallurgy, Pearson India Education Services
- V. D. Kodgire, Material Science and Metallurgy, Everest Publishing House
- O. P. Khanna, Material Science and Metallurgy, Dhanpat Rai Publications
- S. L. Kakani, Material Science and Metallurgy, Khanna Publishers
- R. K. Singal, Engineering Materials: Material Science and Metallurgy, Khanna Publishers
- R. Balasubramaniam, Material Science and Metallurgy, Oxford University Press India
- R. Santha Kumar, Materials Science and Metallurgy, Pearson Education India
- N. R. Aravindan, Metallurgical Engineering Materials Science and Metallurgy, McGraw Hill Education India
- V. D. Kodgire, Material Science and Metallurgy, Nirali Prakashan

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Semester-X

MASTER'S IN CHEMISTRY

GENERIC ELECTIVES (GE 10C) Environmental Chemistry

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite		
		Lecture	Tutorial	Practical/Practice	criteria	of the course		
						(if any)		
GE: 10C	4	4	-	-	Chemistry	-		
Environmenal					in Bachelor			
Chemistry					of Science			
MASTER'S IN CHEMISTRY								
Programme: Master's In Chemistry			Year: V		Semester: X			
		·				Paper: GE		

Subject: Chemistry

Course: GE 10C Course Title: Environmental Chemistry

Course Outcomes:

- Understand information regarding the chemical processes taking place in atmosphere, lithosphere, hydrosphere along with the chemistry of to toxic chemical and pollutants.
- State Atmosphere, Lithosphere, Hydrosphere, Biosphere, Acid Rain and ozone layer
- Define Composition of soil, types of soil, Soil Classification Based on Particle Size.
- Understand Control of Soil Erosion and Conservation. Concept of pH and pH measurement.

• Explain Structure and Physiochemical Properties of Water, sources of water.

Explain different types of water purification methods and determination of pH of water.

Credits:4		Generic Elective 3			
	Iax. Marks: As per University rulesMin. Passing Marks: As per University				
Unit	Торіс	No. of Hours			
	Introduction to Environmental Chemistry: Concept and scope of				
Unit I	environmental chemistry. Environmental terminology and nomenclatures.				
	Environmental segments. The natural cycles of environment (Hydrological,	12			
	Oxygen, Nitrogen).				
Unit II	Atmosphere and Air Pollution: Regions of the atmosphere, reactions in				
	atmospheric chemistry, Earth's radiation balance, particles, ion and radicals in	12			
	the atmosphere. Chemistry of ozone layer. Particulates, aerosols, SOx, NOx,				
	COx and hydrocarbon. Photochemical smog, air-quality standards.				
Unit III	Hydrosphere and Water Pollution: Complexation in natural water and				
	waste-water. Micro-organism in aquatic chemical reactions. Eutrophication.				
	Microbiology mediated redox reactions Water-quality parameters and				
	standards: physical and chemical parameters (colour, odour, taste and	25			
	turbidity). Dissolved oxygen: BOD, COD. Total organic carbon, nitrogen,				
	sulfur, phosphorus and chlorine. Chemical speciation (Pb, As, Hg).				
	Lithosphere: Inorganic and organic components in soil, acid-base and ion-				
	exchange reactions in soil, micro and macro nutrients, nitrogen pathways and				
	NPK in soil.				
Unit IV	Chemical Toxicology: Toxic chemicals in the environments. Impact of toxic				
	chemicals on enzymes. Biochemical effects of arsenic, cadmium, lead,				
	mercury, carbon monoxide, nitrogen oxides and sulphur oxides.				

Recommended Readings:

- Environmental Chemistry A global perspective; Fourth Edition, Gary W. vanLoon and Stephen J. Duffy
- Environmental Chemistry A.K. Day, New Age.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online content:

- https://nptel.ac.in/courses/122/106/122106030/
- https://nptel.ac.in/courses/104/103/104103020/
- https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-ce57/
- https://onlinecourses.nptel.ac.in/noc21 ce63/preview
- https://www.vssut.ac.in/lecture notes/lecture1530778260.pdf
- https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ